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A fast multipole boundary element method (FM-BEM) for solving large-scale potential problems ruled by
the Laplace equation in a locally-perturbed 2-D half-plane with a Robin boundary condition is developed
in this paper. These problems arise in a wide gamut of applications, being the most relevant one the scat-
tering of water-waves by floating and submerged bodies in water of infinite depth. The method is based
on a multipole expansion of an explicit representation of the associated Green’s function, which depends
on a combination of complex-valued exponential integrals and elementary functions. The resulting
method exhibits a computational performance and memory requirements similar to the classic FM-
BEM for full-plane potential problems. Numerical examples demonstrate the accuracy and efficiency of
the method.

� 2012 Elsevier B.V. All rights reserved.
1. Introduction

Robin boundary condition for the Laplace equation is a broadly
used mathematical model that arises in a wide gamut of engineer-
ing problems. One of the most important applications is the theory
of water-waves, in which the Robin boundary condition (with a
real parameter) gives a linearized description of the propagation
of time-harmonic gravity waves on the surface of an incompress-
ible inviscid irrotational fluid [1,2]. Particularly when considering
a compactly perturbed half-plane, this model predicts the scatter-
ing of small amplitude water-waves due to the presence of floating
or submerged bodies. Otherwise, complex Robin parameters play a
role in modeling water-wave phenomena in domains involving
porous structures like permeable breakwaters [3]. Other applica-
tions include harmonic potentials in domains containing rough
surfaces [4], steady-state heat conduction using linear convection
boundary conditions [5,6], and approximation of low-frequency
sound and electromagnetic wave propagation above the ground
[7,8]. More recently this model has been used to simulate the fluid
flow induced by nonuniform alternating-current electric fields in
electrolytes on microelectrodes [9].

An appropriate approach to numerically solve the Laplace equa-
tion above a Robin half-plane is the boundary element method
ll rights reserved.

Computational Mathematics,
na, CA 91125, United States.
rancibia), pramacio@uc.cl (P.

ran@ing.uc.cl (M. Durán).
(BEM) [10,11], since it provides a natural framework to take the
unboundedness of the computational domain and radiation/decay-
ing conditions at infinity into account. The essence of the BEM is
the knowledge of the Green’s function of the problem. However,
unlike half-plane problems with Dirichlet or Neumann boundary
conditions where the Green’s function can be directly obtained
by applying the method of images, the computation of Green’s
function for the Robin problem usually entails either the applica-
tion of the complex image method or Fourier transform techniques
that usually lead to complicated non-explicit representations
unsuitable for direct numerical evaluations. Expressions for the
Green’s function of the Laplace equation in two-and three-dimen-
sional Robin half-spaces were first derived by John [12,13]. Since
then, many other equivalent expressions have been obtained
[1,2,14], based on integrals representations and series expansions.
To the authors’ knowledge, the first explicit or closed-form expres-
sion for the Green’s function in the two-dimensional case, was re-
cently derived by Hein et al. [15], by means of a combination of
elementary functions and complex-valued exponential integrals.
This relatively simple representation can be accurately evaluated
numerically in the complex-plane, so it is easy to incorporate it
into a BEM code.

An important disadvantage of the conventional BEM is that the
discretized boundary integral equation yields a dense system of
equations. Therefore, when this method is applied to problems de-
fined in domains with large or complex boundaries where many
elements are required, the linear system readily becomes intracta-
ble or too expensive to be solved by standard methods. Due to this
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Fig. 1. Domain of the Robin half-plane problem.
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reason, conventional BEM has not been considered a practical alter-
native for large-scale problems [16]. A method for overcoming this
drawback is the fast multipole method (FMM) originally introduced
by Rokhlin [17] for the Laplace equation in two-dimensions and fur-
ther developed by Greengard and Rokhlin for the many-body prob-
lem [18]. This method allows to speed up the solution of the BEM
linear system reducing at the same time data storage requirements.
The FMM in conjunction with the BEM and an iterative method for
solving the linear system gives rise to the so-called fast multipole
boundary element method (FM-BEM). By means of the FMM, time
requirements for solving the BEM linear system are reduced to only
OðNÞ or OðN log NÞ operations, instead of OðN3Þ (direct solver) or
OðN2Þ (iterative solver), where N is the number of nodes of the dis-
cretized boundary integral equation. This method has been success-
fully applied to potential problems [19–21], acoustics [22–26],
elastostatics [27–29], Stokes flows [30–32], time-harmonic elasto-
dynamics [33,34], and electromagnetic scattering [35–37]. Further
references can be found in the comprehensive review article of Ni-
shimura [16] and in the book of Liu [38].

In this article we develop a FM-BEM for solving the Laplace
equation in a locally perturbed half-plane with a Robin boundary
condition. As it is well-known, the FM-BEM relies on finding an
appropriate multipole series for the associated Green’s function.
Such series was first derived by Ursell [39,40,42], Thorne [41]
and Martin [43]. However, the functions upon which Ursell’s mul-
tipole expansion is expressed are difficult to compute numerically
and some of the addition theorems needed to implement the FM-
BEM are unknown. In this article we perform a new multipole
expansion for the Green’s function based on the explicit represen-
tation of Hein et al. [15]. Logarithmic terms of the Green’s function
are expanded as in the classical algorithm, while the terms
depending on the exponential integral are expanded in a series
of functions that can be computed either directly or by applying
simple recurrence relations. Bounds for the truncation error asso-
ciated to the series are explicitly obtained. We implement an adap-
tive FM-BEM that exhibits a performance of OðNÞ operations per
matrix–vector multiplication, the same computational complexity
of the original algorithm. The linear system of equations is solved
by using the generalized minimal residual (GMRES) algorithm
[44]. Numerical examples show the accuracy and efficiency of
the proposed algorithm.

The structure of this paper is as follows. In Section 2 we give an
overview of the problem, showing its boundary integral equation
and its numerical discretization by the collocation BEM. Next, Sec-
tion 3 deals with the multipole series expansions of the Green’s
function and of its normal derivative. Subsequently, in Section 4
we describe the algorithm. Finally, in Section 5 we illustrate the
use of the method by some examples.

2. Robin half-plane problem for the Laplace equation

2.1. Problem setup

Let Xe � R2
þ ¼ fðx1; x2Þ 2 R2 : x2 > 0g be a locally perturbed

half-plane (see Fig. 1) with boundary C admitting the splitting
C ¼ Cp [ C1, where Cp \ C1 ¼ ;; Cp � R2

þ is bounded, and
C1 � fðx1; x2Þ 2 R2 : x2 ¼ 0g. Now, we consider the differential
problem

Du ¼ 0 in Xe;

@u
@n
� msu ¼ f on C;

þradiation condition as jyj ! þ1;

8>><>>: ð1Þ

where the function ms : C! C; ms 2 L1ðCÞ, is referred to as the
Robin parameter and is such that
msðxÞ ¼ mþ mpðxÞ; ð2Þ

with m 2 C being a constant and mp : C! C; suppfmpg � Cp. Due to
physical considerations concerning dissipation (cf. [3]), we have
that m lies in the first quadrant of the complex plane. More precisely,
0 6 arg m < p=2. We also assume that the source term
f : C! C; f 2 H�1=2ðCÞ, is such that suppffg � Cp, which is a stan-
dard assumption in the formulation of scattering problems like this,
where surface waves are allowed to be diffracted by the perturba-
tion Cp.

In order to perform a boundary integral equation leading to the
solution of Eq. (1), we resort to the Green’s function given by the
solution of the boundary-value problem (cf. [15])

DyGðx; yÞ ¼ dxðyÞ; in R2
þ;

@G
@y2
ðx; yÞ þ mGðx; yÞ ¼ 0; on fy2 ¼ 0g;

þradiation condition as jyj ! þ1;

8>>><>>>: ð3Þ

which has to be understood in the sense of distributions on account
of the fact that dx 2 D0ðR2

þÞ is Dirac’s delta distribution supported at
x 2 R2

þ. The suitable radiation condition for Eq. (3), which also is the
radiation condition for Eq. (1), is given by

jGj 6 C
jyj and

@G
@ry

���� ���� 6 C

jyj2
if y2 >

1
m

lnð1þ mpjyjÞ; ð4aÞ

jGj 6 C and
@G
@ry
� imG

���� ���� 6 C
jyj if y2 <

1
m

lnð1þ mpjyjÞ: ð4bÞ

It qualitatively corresponds to surface waves propagating along the
flat boundary C1 going away from the fixed point x 2 R2

þ. According
to [15], problem Eq. (3) admits a unique explicit solution

Gðx; yÞ ¼ 1
2p

ln jy � xj � 1
2p

ln jy � xj � ie�mðy2þx2Þ cosðmðy1 � x1ÞÞ

þ e�mðy2þx2Þ

2p
eimðy1�x1ÞEiðmððy2 þ x2Þ � iðy1 � x1ÞÞÞ
�

þe�imðy1�x1ÞEiðmððy2 þ x2Þ þ iðy1 � x1ÞÞÞ
�
; ð5Þ

where x ¼ ðx1;�x2Þ is the image point of x and where Ei denotes the
exponential integral function (cf. [45]) defined as the Cauchy prin-
cipal-value integral

EiðzÞ ¼ �
Z z

�1

et

t
dt; j arg zj < p: ð6Þ

Likewise, the gradient of Eq. (5) can be explicitly computed and is
given by

ryGðx;yÞ¼ y�x

2pjy�xj2
þ y�x

2pjy�xj2
� ime�mðy2þx2Þ

sinðmðy1�x1ÞÞ
cosðmðy1�x1ÞÞ

� �
� m

2p
e�mðy2þx2Þ

�i
1

� �
eimðy1�x1ÞEi mððy2þx2Þ� iðy1�x1ÞÞð Þ

�
þ

i
1

� �
e�imðy1�x1ÞEiðmððy2þx2Þþ iðy1�x1ÞÞÞ

�
ð7Þ
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Thanks to the Green’s function Eq. (5), it is possible to derive an
integral representation and a boundary integral equation for the
solution of Eq. (1). They respectively read as follows,

uðxÞ ¼
Z

Cp

Kðx; yÞuðyÞdcðyÞ þ
Z

Cp

Gðx; yÞf ðyÞdcðyÞ; x 2 Xe [ C1;

ð8Þ

uðxÞ
2
¼
Z

Cp

Kðx; yÞuðyÞdcðyÞ þ
Z

Cp

Gðx; yÞf ðyÞdcðyÞ; x 2 Cp; ð9Þ

where we have introduced an additional integral kernel defined by

Kðx; yÞ¼def @G
@ny
ðx; yÞ � msðyÞGðx; yÞ; x 2 Xe [ C; y 2 C: ð10Þ

Results on the existence and uniqueness of solutions (for a re-
stricted set of Robin parameters) for the boundary integral
Eq. (9) can be found in [46], whereas explicit examples of non-
uniqueness can be found in [47] and references therein.

It has to be pointed out that the restriction on the domain Xe to
lie on the upper half-plane R2

þ stems from the fact that formulae
Eqs. (8) and (9) are only valid in this case. If a perturbation towards
the lower half-plane is desired for Xe, then the derivation of an
appropriate integral representation and equation requires the con-
sideration of the additional singularities of the Green’s function in
the complementary half-space, i.e., the logarithmic singularity at
the image point x and the jump of the y1-derivative across the
half-line ! ¼ fy1 ¼ x1; y2 < �x2g due to the effect of the analytic
branch cut of the complex-valued exponential integral. Both singu-
larities yield Dirac mass distributions when the Laplacian of the
Green’s function is computed (cf. [15,46]). Despite the fact that this
restriction may appear unphysical and stringent for some applica-
tions, it is fulfilled by a wide variety of problems involving linear-
ized water-waves, where the perturbation models submerged and
floating objects, and where the water body remains always con-
tained inside the considered half-plane.

2.2. Discretization of the boundary integral equation

In what follows we are interested in numerically solving Eq. (9)
by combining the BEM and the FMM. For the sake of efficiency and
simplicity, we discretize Eq. (9) through a colocation method be-
cause this approach requires quadrature approximation of single
boundary integrals, while, for instance, the variational Galerkin ap-
proach requires the evaluation of double boundary integrals. Nev-
ertheless, minor modifications of this FM-BEM make it possible to
apply it within a variational Galerkin approach as well.

Let us assume that Cp ¼
SN
‘¼1C‘, where C‘1 \ C‘2 ¼ ; if ‘1 – ‘2,

and that each C‘ is a straight line segment in the plane. We look
then for an approximation of the form

uðyÞ � uhðxÞ ¼
XN

j¼1

ujujðyÞ; ð11Þ

where the (standard) basis functions ujðyÞ; j ¼ 1; . . . ;N, are defined
on Cp and satisfy ujðxiÞ ¼ dij with xi; i ¼ 1; . . . ;N, being the colloca-
tion points. Here, the approximate solution uh depends on the dis-
cretization refinement h, defined as h ¼max‘2f1;...;NgjC‘j.

In order to obtain a system of equations for the coefficients uj in
Eq. (11) we substitute the right-hand side of Eq. (11) into Eq. (9)
and evaluate the terms in this equation at the collocation points.
It yields the system of equations

I
2
� K

	 

u ¼ Gf; ð12Þ

where fi ¼ f ðxiÞ; I 2 CN�N is the identity matrix, and
kij ¼
def XN

‘¼1

Z
C‘

Kðxi; yÞujðyÞdcðyÞ; i; j ¼ 1; . . . ;N; ð13Þ

gij ¼
def XN

‘¼1

Z
C‘

Gðxi; yÞujðyÞdcðyÞ; i; j ¼ 1; . . . ;N: ð14Þ

As should be expected in a collocation BEM K 2 CN�N is a general
dense non-symmetric matrix, thus OðN2Þ operations are needed to
compute its coefficients. It is important to observe that due to the
form of the Green’s function Eq. (5), the computational complexity
to compute K is about ten times the one required to compute the
discretization matrix (with the same number of degrees of freedom)
associated to the potential problem of a bounded obstacle in the
whole plane, such as the one studied in [21].

The linear system Eq. (12) can be solved by direct methods like
the LU decomposition and the Gauss elimination algorithm. How-
ever, those methods are considered inefficient for problems having
a large number of degrees of freedom N due to the fact that OðN3Þ
operations are required. On the other hand, iterative methods like,
e.g., the conjugate gradient or GMRES algorithm, perform consider-
ably better than direct solvers when I=2� K is well conditioned.
Nevertheless, those methods entail evaluating several times the
multiplication of K by a complex vector, which is also considered
inefficient for large N because it demands OðN2Þ operations per
iteration.

The key idea of the FM-BEM is to speed up the matrix–vector
multiplications required by iterative linear system solvers to con-
verge within a prescribed tolerance, reducing its complexity to only
OðNÞ operations per iteration. To do so, matrix K must be interpreted
as the sum of two matrices, namely Knf and K ff , where Knf is due to
the contribution of sources located in the near field, and K ff is due to
the contributions of sources located in the far field. The exact mean-
ing of the near and far field will be established later on this paper.
The entries of Knf are explicitly computed as in the conventional
BEM, i.e., the singularities of K in the integral Eq. (13) are solved ana-
lytically while the remaining terms are computed employing an
accurate quadrature rule (see [46]). If enough memory is available,
Knf is stored, so it is not necessary to recompute it in subsequent
iterations. By contrast, the entries of K ff are never explicitly com-
puted. Instead, in each solver iteration the result of the matrix mul-
tiplication between K ff and a vector v is efficiently approximated by
using a multipole expansion for

R
C‘

Kðxi; yÞujðyÞ v jdcðyÞ. The next
sections address the issue of describing how this multipole expan-
sion is applied to accelerate the solution of the problem, reducing
at the same time the memory requirements.

3. Series expansions

In this section we perform a series representation of the Green’s
function and its normal derivative in order to derive the multipole
and local expansions.

3.1. Complex variable notation

As is conventional in two-dimensional potential problems, we
resort to the use of complex analysis tools. Thus, let us consider
the bijective map R2

þ � R2
þ 3 ðx; yÞ# ðw; zÞ 2 Cþ � Cþ, defined by

wðxÞ ¼ x1 þ ix2 and zðyÞ ¼ y1 þ iy2, where Cþ ¼ fz 2 C : Jmz > 0g.
This map allows to express Eq. (5) as

Gðw; zÞ ¼ 1
2p

Re lnðw� zÞ � lnðw� zÞf g

� i
2

e�imðw�zÞ þ eimðw�zÞ
n o

þ e�imðw�zÞ

2p
Ei imðw� zÞð Þ

þ e�imðz�wÞ

2p
Ei imðz�wÞð Þ; ð15Þ
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where Gðx; yÞ ¼ GðwðxÞ; zðyÞÞ. Here, the complex logarithm and the
exponential integral function have to be understood in the sense of
the principal value, so their domain of definition is restricted to
0 < j arg zj < p. Likewise, we get that the normal derivative of the
Green’s function can be expressed as

Fðw; zÞ ¼ 1
2p

Re
g

z�w
þ g

z�w

n o
þ m

2
ge�imðw�zÞ � geimðw�zÞ
n o

þ im
2p

ge�imðw�zÞEi imðw� zÞð Þ � ge�imðz�wÞEi imðz�wÞð Þ
n o

;

ð16Þ

where @GðxðwÞ; yðzÞÞ=@ny ¼ Fðw; zÞ and gðzÞ ¼ g1ðyðzÞÞ þ ig2ðyðzÞÞ
with ny ¼ ½g1;g2�

T being the unit normal vector pointing outwards
from the region Xe. Identity Eq. (16) follows directly by taking the
dot product between ny and the Green’s function’s gradient Eq.
(7) and by transforming the resulting expression into complex var-
iable notation.

3.2. Series expansion of the logarithmic terms

We start by expanding the logarithmic terms of the Green’s
functions. Thus, let z and w 2 Cþ such that jzj < jwj. Then, resorting
to some well-known results for the Laplace equation in the plane
(cf. [17,18,49]), we get that all terms in Eq. (15) involving loga-
rithms can be expanded as

lnðw� zÞ ¼ �
X1
n¼0

Sð1Þn ðwÞR
ð1Þ
n ðzÞ; jzj < jwj; ð17Þ

where the functions used to perform the series Eq. (17) are defined
as

Rð1Þn ðzÞ ¼
def zn

n!
; n P 0; ð18aÞ

Sð1Þn ðzÞ ¼
def ðn� 1Þ!

zn ; n P 1; and Sð1Þ0 ðzÞ ¼
def� lnðzÞ: ð18bÞ

An addition formula for the functions Rð1Þn can be readily ob-
tained from the binomial theorem, and its given by

Rð1Þn ðz1 þ z2Þ ¼
Xn

m¼0

Rð1Þn�mðz1ÞRð1Þm ðz2Þ: ð19Þ

Likewise, an analogous result for the functions Sð1Þn is

Sð1Þn ðz1 þ z2Þ ¼
X1
m¼0

Sð1Þnþmðz1ÞRð1Þm ð�z2Þ; jz2j < jz1j; ð20Þ

which can be worked out by computing the Laurent series expan-
sion of Sð1Þðz1 þ z2Þ about z2 when jz2j < jz1j.

3.3. Series expansion of the exponential integral function

Now we deal with the series expansion of the Green’s function
terms depending on the exponential integral function, which is
based on the next two propositions.

Proposition 3.1 (see [50]). Let z 2 C n f0g such that j arg zj < p.
Thus, the derivatives of the exponential integral function at z are given
by
dnEi
dzn ðzÞ ¼ dn�1ðzÞ; n P 1; ð21Þ

where the functions dn are defined as

dnðzÞ ¼
dn

dzn

ez

z

	 

; n P 0

and can be computed through the recurrence relation
dnðzÞ þ
n
z

dn�1ðzÞ ¼
ez

z
: ð22Þ

Furthermore, the functions dn can be explicitly expressed as

dnðzÞ ¼ ð�1Þn n!

znþ1 ez
Xn

k¼0

ð�zÞk

k!
; n P 0: ð23Þ

The next proposition establishes a series representation of the
exponential integral function.
Proposition 3.2. Let m 2 C such that 0 6 arg m 6 p=2. Then, the
Taylor series expansion

Ei imðw� zÞð Þ ¼ EiðimwÞ þ
X1
n¼1

dn�1ðimwÞ
n!

ð�imzÞn ð24Þ

holds true for all complex numbers z and w belonging to Cþ such that
jzj < jwj.

Proof. First we observe that the exponential integral is a single-
valued function in the region j arg zj < p, so the function EiðimwÞ
is single-valued for all w 2 Cþ due to the fact that
�p=2 < arg imwf g < p when m lies in the first quadrant. Thus, as
the exponential integral is also analytic in that region, we are
allowed to perform a Taylor series about imw to get Eq. (24), which
is valid for all z 2 Cþ such that jmzj < q, with q being the radius of
convergence of the series. Now, as it is well known (cf. [51]), q can
be determined by

q ¼ lim
n!1

dn�1ðimwÞ=n!

dnðimwÞ=ðnþ 1Þ!

���� ���� ¼ jmjjwjlimn!1

nþ 1
n

	 
 Pn�1
k¼0

ðimwÞk
k!

��� ���Pn
k¼0

ðimwÞk
k!

��� ���
8<:

9=;;
where the last term follows from Eq. (23). Then, taking into account
that

lim
n!1

Xn�1

k¼0

ðimwÞk

k!
¼ lim

n!1

Xn

k¼0

ðimwÞk

k!
¼ eimw;

we get that q ¼ jmwj. Using this fact it can be concluded that the ser-
ies Eq. (24) is valid for all z and w 2 Cþ such that jzj < jwj. h

In order to write in a convenient form the series expansion of
the Green’s function terms depending on the exponential integral,
we define the sets of functions

Rð2Þn ðzÞ ¼
def eimzðimzÞn

n!
; n P 0; ð25Þ

Sð2Þn ðzÞ ¼
def

e�imzEiðimzÞ if n¼0;

ð�1Þne�imzdn�1ðimzÞ¼�ðn�1Þ!
ðimzÞn

Xn�1

k¼0

ð�imzÞk

k!
if n P 1;

8><>: ð26Þ

where the functions dn are defined in Eq. (22). Let us observe that
henceforth the functions Rð2Þn and Sð2Þn depend implicitly on the
impedance parameter m. By using these functions we achieve that

e�imðw�zÞEi imðw� zÞð Þ ¼
X1
n¼0

Sð2Þn ðwÞR
ð2Þ
n ðzÞ; jzj < jwj; ð27aÞ

e�imðz�wÞEi imðz�wÞð Þ ¼
X1
n¼0

Sð2Þn ð�wÞRð2Þn ð�zÞ; jzj < jwj: ð27bÞ

It can be straightforwardly deduced from Eq. (19) that the functions
Rð2Þn satisfy the addition formula

Rð2Þn ðz1 þ z2Þ ¼
Xn

m¼0

Rð2Þn�mðz1ÞRð2Þm ðz2Þ; n P 0: ð28Þ

On the other hand, as the functions Sð2Þn are, up to the factor e�mz, the
derivatives of the exponential integral and are analytical in C n f0g
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when n P 1, we get from the Taylor theorem that they satisfy the
addition formula

Sð2Þn ðz1 þ z2Þ ¼
X1
m¼0

Sð2Þnþmðz2ÞRð2Þm ð�z1Þ; n P 1; jz1j < jz2j: ð29Þ

Formula Eq. (29) can be proved by resorting to the same arguments
used in the proof of Proposition 3.2.

3.4. Expansion of the Green’s function

Now we are in position to perform the series representation of
the Green’s function Eq. (15) and its normal derivative Eq. (16). Let
z and w 2 Cþ such that jzj < jwj. Then, by directly using Eqs. (17)
and (27a) we get that the Green’s function admits the series
expansion

Gðw; zÞ ¼ 1
2p
X1
n¼0

Re Sð1Þn ðwÞ � Sð1Þn ðwÞ
h i

Rð1Þn ðzÞ
n o

þ 1
2p
X1
n¼0

Sð2Þn ðwÞR
ð2Þ
n ðzÞ þ Sð2Þn ð�wÞRð2Þn ð�zÞ

n o
� i

2
e�imwRð2Þ0 ðzÞ þ eimwRð2Þ0 ð�zÞ
n o

: ð30Þ

To perform an expansion of the normal derivative we take the
derivative of Eq. (30). In order to do so we first note that the Green’s
function can be expressed as Gðw; zÞ ¼ f1ðzÞ þ f2ðzÞ where f1 and f2

are analytic functions of z 2 Cþ and z 2 C� respectively. Conse-
quently, it can be deduced that its gradient can be computed as
f 01ðzÞ þ f 02ðzÞ; if 01ðzÞ � if 02ðzÞ
� �

and, consequently, its normal derivative
is given by Fðw; zÞ ¼ gf 01ðzÞ þ gf 02ðzÞ. Recognizing the function f1 and
f2 in Eq. (30) and applying the previous formula, we achieve that

Fðw; zÞ ¼ 1
2p
X1
n¼0

Re g Sð1Þn ðwÞ � Sð1Þn ðwÞ
h i

Rð1Þ0n ðzÞ
n o

þ 1
2p
X1
n¼0

gSð2Þn ðwÞR
ð2Þ0
n ðzÞ � gSð2Þn ð�wÞRð2Þ0n ð�zÞ

n o
� i

2
ge�imwRð2Þ00 ðzÞ � geimwRð2Þ00 ð�zÞ
n o

: ð31Þ

Here, the derivative of the functions Rð1Þn ; j ¼ 1;2, can be computed
through the formulae

Rð1Þ00 ðzÞ ¼ 0; Rð2Þ00 ðzÞ ¼ imRð2Þ0 ðzÞ; Rð1Þ0n ðzÞ ¼ Rð1Þn�1ðzÞ;

Rð2Þ0n ðzÞ ¼ im Rð2Þn ðzÞ þ Rð2Þn�1ðzÞ
n o

; n P 1: ð32Þ

It can be directly checked that the addition formulae Eq. (19) and
Eq. (28) are as well accomplished by the derivatives, i.e.,

RðjÞ0n ðz1 þ z2Þ ¼
Xn

m¼0

RðjÞn�mðz1ÞRðjÞ0m ðz2Þ; n P 0; j ¼ 1;2: ð33Þ
4. Fast multipole boundary element method

In this section we develop the multipole and local expansions of
the Green’s function for the Laplace equation in an impedance half-
plane and its application to the FM-BEM.

4.1. Multipole expansion, moments definition and moment-to-moment
translation

We start by deducing the multipole expansion of integrals of
the form Eq. (13). Accordingly, let us define Kðw; zÞ ¼ KðxðwÞ;
yðzÞÞ with K defined in Eq. (10), and consider Cp to be a curve in
Cþ. Now, we take z0 2 Cþ such that jz� z0j < r for all z 2 C‘ � Cp

with r > 0, and we let w 2 Cþ be such that r < jw� z0j 6 jw� z0j.
Thus, combining Eqs. (30) and (31) we can establish the multipole
series expansionZ

C‘

Kðw;zÞuðzÞdrz¼
1

4p
X1
n¼0

Sð1Þn ðw�z0Þ�Sð1Þn ðw�z0Þ
n o

Mð1Þ
n;‘ ðz0Þ

þ 1
4p
X1
n¼0

Sð1Þn ðw�z0Þ�Sð1Þn ðw� z0Þ
n ocMð1Þ

n;‘ ðz0Þ

þ 1
2p
X1
n¼0

Sð2Þn ðw�z0ÞMð2Þ
n;‘ ðz0ÞþSð2Þn ðz0�wÞcMð2Þ

n;‘ ðz0Þ
n o

� i
2

e�imðw�z0ÞMð2Þ
0;‘ ðz0Þþe�imðz0�wÞcMð2Þ

0;‘ ðz0Þ
n o

; ð34Þ

where the multipole moments about the point z0 are defined as

MðiÞ
n;‘ðz0Þ¼def

Z
C‘

gRð1Þ0n ðz�z0Þ�msðzÞRð1Þn ðz�z0Þ
h i

uðzÞdrz; i¼1;Z
C‘

gRð2Þ0n ðz�z0Þ�msðzÞRð2Þn ðz�z0Þ
h i

uðzÞdrz; i¼2;

8>><>>: ð35Þ

cMðiÞ
n;‘ðz0Þ¼def

Z
C‘

gRð1Þ0n ðz�z0Þ�msðzÞRð1Þn ðz�z0Þ
h i

uðzÞdrz; i¼1;Z
C‘

�gRð2Þ0n ðz0�zÞ�msðzÞRð2Þn ðz0�zÞ
h i

uðzÞdrz; i¼2:

8>><>>: ð36Þ

Let us observe that when ms is a piecewise constant function on
the segments C‘, the moments can be computed analytically for a
wide range of nodal basis functions uj.

At this stage it should be added that the multipole expansion
Eq. (34) is also valid to evaluate the integrals

R
C‘

Gðw; zÞuðzÞdrz

and
R

C‘
Fðw; zÞuðzÞdrz when the moments, Eqs. (35) and (36), are

computed by replacing g ¼ 0 and ms ¼ �1 in the case of the integral
involving the kernel G, and replacing ms ¼ 0 in the case of the inte-
gral involving the kernel F.

A key issue for the efficiency of the FM-BEM is to find a way to
shift the moments from z0 to a new nearby point z00 . To do so, we
replace z0 by z00 in Eqs. (35) and (36), and write z� z00 ¼ z1 þ z2,
with z1 ¼ z� z0 and z2 ¼ z0 � z00 . Therefore, applying the addition
formulae Eqs. (19), (28), and (33), we get that the moments about
z00 can expressed as a linear combination of the moments about z0.
More precisely, this procedure yields the formulae

MðiÞ
n;‘ðz00 Þ ¼

Xn

m¼0

Rð1Þn�mðz0 � z00 ÞM
ð1Þ
m;‘ðz0Þ; i ¼ 1;

Xn

m¼0

Rð2Þn�mðz0 � z00 ÞM
ð2Þ
m;‘ðz0Þ; i ¼ 2;

8>>>><>>>>: ð37Þ

cMðiÞ
n;‘ðz00 Þ ¼

Xn

m¼0

Rð1Þn�mðz0 � z00 ÞcMð1Þ
m;‘ðz0Þ; i ¼ 1;

Xn

m¼0

Rð2Þn�mðz00 � z0ÞcMð2Þ
m;‘ðz0Þ; i ¼ 2

8>>>><>>>>: ð38Þ

referred to as moment-to-moment (M2M) translations.

4.2. Moment-to-local and local-to-local translations

Let w0 2 Cþ be such that jw�w0j < r < jw0 � z0j 6 jw0 � z0j and
let us introduce the auxiliary variables z2 ¼ w0 � z0; z3 ¼ w0 � z0

and z1 ¼ w�w0. Expressing Eq. (34) using these new variables
we getZ

C‘

Kðw;zÞuðzÞdrz ¼
1

4p
X1
n¼0

Sð1Þn ðz1þ z3Þ�Sð1Þn ðz1þ z2Þ
h i

Mð1Þ
n;‘ ðz0Þ

þ 1
4p
X1
n¼0

Sð1Þn ðz1þ z3Þ�Sð1Þn ðz1þ z2Þ
h icMð1Þ

n;‘ ðz0Þ

þ 1
2p
X1
n¼0

Sð2Þn ðz1þ z3ÞMð2Þ
n;‘ ðz0ÞþSð2Þn ð�z1� z3ÞcMð2Þ

n;‘ ðz0Þ
n o

� i
2

e�imðz1þz3ÞMð2Þ
0;‘ ðz0Þþeimðz1þz3ÞcMð2Þ

0;‘ ðz0Þ
n o

:



C. Pérez-Arancibia et al. / Comput. Methods Appl. Mech. Engrg. 233–236 (2012) 152–163 157
Subsequently, applying addition formulae Eqs. (20) and (29) to
expand the functions SðiÞn ; i ¼ 1;2, and rewriting the resulting
expression as a function of the original variables z0;w and w0, we
achieve thatZ

C‘

Kðw;zÞuðzÞdrz¼
1

4p
X1
m¼0

Rð1Þm ðw0�wÞ Lð1Þm;‘ðw0Þ�bLð1Þm;‘ðw0Þ
n o

þ 1
4p
X1
m¼0

Rð1Þm ðw0�wÞ bLð1Þm;‘ðw0Þ�Lð1Þm;‘ðw0Þ
n o

þ 1
2p
X1
m¼0

Rð2Þm ðw0�wÞLð2Þm;‘ðw0ÞþRð2Þm ðw�w0ÞbLð2Þm;‘ðw0Þ

� i
2

Rð2Þ0 ðw0�wÞLð3Þ0;‘ ðw0ÞþRð2Þ0 ðw�w0ÞbLð3Þ0;‘ ðw0Þ
n o

;

ð39Þ
where we introduced the local expansions coefficients LðiÞm;‘ andbLðiÞm;‘; i ¼ 1;2;3, respectively defined as

LðiÞm;‘ðw0Þ¼def

X1
n¼0

Sð1Þnþmðw0 � z0ÞMð1Þ
n;‘ ðz0Þ; i ¼ 1;

X1
n¼0

Sð2Þnþmðw0 � z0ÞMð2Þ
n;‘ ðz0Þ; i ¼ 2;

e�imðw0�z0ÞMð2Þ
0;‘ ðz0Þ; i ¼ 3;

8>>>>>><>>>>>>:
ð40Þ

bLðiÞm;‘ðw0Þ¼def

X1
n¼0

Sð1Þnþmðw0 � z0ÞcMð1Þ
n;‘ ðz0Þ; i ¼ 1;

X1
n¼0

Sð2Þnþmðz0 �w0ÞcMð2Þ
n;‘ ðz0Þ; i ¼ 2;

eimðw0�z0ÞcMð2Þ
0;‘ ðz0Þ; i ¼ 3:

8>>>>>><>>>>>>:
ð41Þ

The series Eq. (39) is referred to as local expansion while formulae
Eqs. (40) and (41) are referred to as moment-to-local (M2L) transla-
tions. It should be pointed out that Eq. (39) is also valid for expand-
ing integrals that involve G and F kernels.

Finally, from the definitions Eqs. (40) and (41) we obtain a way to
transfer M2L expansions from w0 to a new nearby point w00 . Replac-
ing w0 by w00 in Eqs. (40) and (41), and assuming that
jw0 �w00 j < r < jz0 �w0j, we apply the addition formulae Eqs. (20)
and (29) to expand the functions depending on w00 � z0 in terms of
functions depending on w0 � z0 and w00 �w0. This process results in

LðiÞm;‘ðw00 Þ ¼

X1
k¼m

Rð1Þk�mðw0 �w00 ÞL
ð1Þ
k;‘ ðw0Þ; i ¼ 1;

X1
k¼m

Rð2Þk�mðw0 �w00 ÞL
ð2Þ
k;‘ ðw0Þ; i ¼ 2;

Rð2Þ0 ðw0 �w00 ÞL
ð3Þ
0;‘ ðw0Þ; i ¼ 3;

8>>>>>><>>>>>>:
ð42Þ

bLðiÞm;‘ðw00 Þ ¼

X1
k¼m

Rð1Þk�mðw0 �w00 ÞbLð1Þk;‘ ðw0Þ; i ¼ 1;

X1
k¼m

Rð2Þk�mðw00 �w0ÞbLð2Þk;‘ ðw0Þ; i ¼ 2;

Rð2Þ0 ðw00 �w0ÞbLð3Þ0;‘ ðw0Þ; i ¼ 3

8>>>>>><>>>>>>:
ð43Þ

referred to as local-to-local (L2L) translations.

4.3. Error bounds for the multipole expansions

Due to obvious computational constrains, the multipole and lo-
cal expansions have to be truncated at a finite number of terms
when they are applied to approximate BEM integrals. Then, error
bounds for the truncated series expansions are essential to control
the accuracy of the proposed method, particularly for problems
having solutions that exhibit a surface-wave behavior with a fre-
quency depending on the Robin parameter m. Therefore, we charac-
terize here how the truncation error depends on the Robin
parameter in order to ensure the accuracy of the method for differ-
ent surface-wave frequencies.
For the sake of simplicity in the analysis we start by introducing
the notationZ

C‘

Kðw; zÞuðzÞdrz ¼
/lnðwÞ

4p
þ /EiðwÞ þ /EiðwÞ

2p
þ /cosðwÞ

2i
;

where /ln contains the integrals involving logarithmic kernels and
their derivatives, /cos does the same for the cosine kernel, and

/EiðwÞ ¼
Z

C‘

ðigm� msðzÞÞe�imðw�zÞEiðimðw� zÞÞ � g
w� z

n o
uðzÞdrz;

/EiðwÞ ¼ �
Z

C‘

ðigmþ msðzÞÞe�imðz�wÞEiðimðz�wÞÞ þ g
w� z

� �
uðzÞdrz:

Here it should be pointed out that /cos does not actually entail
approximations by a series, so it is not considered in the analysis.
On the other hand, error bounds for the approximation of /ln can
be found in the large amount of literature available on the topic
(cf. [17,18,49]), so we focus exclusively on the terms depending
on the exponential integral function.

The next proposition states an error bound for the approxima-
tion of /EiðwÞ by a truncated multipole expansion.

Proposition 4.1. Let w; z0 2 Cþ such that jz� z0j < r and jw� z0j
> rd for all z 2 C‘ with r > 0 and d > 1 (see Fig. 2). Also let m 2 C such
that 0 6 arg m 6 p=2. Then, the error bound

/EiðwÞ �
Xp

n¼0

Sð2Þn ðw� z0ÞMð2Þ
n;‘ ðz0Þ

�����
�����

6 kukL1ðC‘Þe
2jmjr jmj þ kmskL1ðC‘Þ

pþ 1
þ 1

r

� �
d�p

d� 1
ð44Þ

holds true for all p P 1, where Sð2Þn and Mð2Þ
n;‘ are defined in Eqs. (26) and

(35), respectively.
Remark 4.1. The error bound Eq. (44) is also valid for the multi-
pole expansion of /EiðwÞ.
Proof. We note first that thanks to the multipole expansion Eq.
(34), the error is explicitly given by

E ¼ /EiðwÞ �
Xp

n¼0

Sð2Þn ðw� z0ÞMð2Þ
n;‘ ðz0Þ

�����
����� ¼ X1

n¼pþ1

Sð2Þn ðw� z0ÞMð2Þ
n;‘ ðz0Þ

�����
�����:
ð45Þ

Subsequently, taking into account the assumption jw� z0j > rd and
the definition of Sð2Þn given in Eq. (26), we can easily get the bound

Sð2Þn ðw� z0Þ
��� ��� ¼ ðn� 1Þ!

jimðw� z0Þjn
Xn�1

k¼0

ðimðz0 �wÞÞk

k!

�����
�����

6

Xn�1

k¼0

ðn� 1Þ!
k!jmjn�kðrdÞn�k

; n P 1: ð46Þ

Likewise, from the definition of Rð2Þn given in Eq. (25), and taking into
consideration the assumption jz� z0j < r, we achieve a bound for
the moments given by

Mð2Þ
n;‘ ðz0Þ

��� ���¼ Z
C‘

gRð2Þ0n ðz�z0Þ�msðzÞRð2Þn ðz�z0Þ
n o

uðzÞdrz

���� ����
6

Z
C‘

ðigm�msÞRð2Þn ðz� z0Þþ igmRð2Þn�1ðz� z0Þ
n o

uðzÞ
��� ���drz

6 kukL1ðC‘Þ
ejmjrjmjnrn

ðn�1Þ!
jmjþkmskL1ðC‘Þ

n
þ1

r

� �
; n P 1: ð47Þ

Therefore, the terms of the series defining the error Eq. (45) can be
bounded as



Fig. 2. Diagram of the parameters involved in the deduction of the error bounds for the multipole series expansion of the integral
R

C‘
Kðw; zÞuðzÞdrz .
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Sð2Þn ðw�z0ÞMð2Þ
n;‘ ðz0Þ

��� ���6 kukL1ðC‘Þe
jmjr jmjþkmskL1ðC‘Þ

n
þ1

r

� �Xn�1

k¼0

ðjmjrdÞk

k!
d�n

:

Now, noticing that

X1
n¼pþ1

Xn�1

k¼0

ðjmjrdÞk

k!
d�n
6

X1
n¼pþ1

Xn

k¼0

ðjmjrdÞk

k!
d�n

¼
X1

n¼pþ1

d�n

 ! X1
k¼0

ðjmjrdÞk

k!
d�k

 !
;

we find that

E 6 kukL1ðC‘Þe
2jmjr jmj þ kmskL1ðC‘Þ

pþ 1
þ 1

r

� �
d�p

d� 1
;

in virtue of the infinite radius of convergence of the exponential ser-
ies and the fact that d > 1. h

The next proposition establishes an error bound for local expan-
sion coefficients of /EiðwÞ.

Proposition 4.2. Let w; z0 2 Cþ such that jz� z0j < r and jw� z0j
> rd for all z 2 C‘ with r > 0 and d > 1 (see Fig. 2). Also let m 2 C such
that 0 6 arg m 6 p=2. Then, the following error bound

Lð2Þm;‘ðw0Þ �
Xp

n¼0

Sð2Þnþmðw0 � z0ÞMð2Þ
n;‘ ðz0Þ

�����
�����

6

kukL1ðC‘Þe
jmjrð1þdÞ

jmjmrm

jmj þ kmskL1ðC‘Þ

pþ 1
þ 1

r

� �
ðmþ pÞ!

p!

ðd� 1Þmþ1

d2mþpþ2

ð48Þ

holds true for all p P 1 and m P 1, where Sð2Þn ;Mð2Þ
n;‘ , and Lð2Þn;‘ are defined

in Eqs. (26), (35), and (40), respectively. For the case m ¼ 0 and p P 1
the corresponding error bound is given by Eq. (44).
Remark 4.2. The error bound Eq. (48) is also valid for bLð2Þm;‘ðw0Þ.
Proof. Due to the definition Eq. (40), we have that the error can be
explicitly expressed as

Em ¼ Lð2Þm;‘ðw0Þ �
Xp

n¼0

Sð2Þnþmðw� z0ÞMð2Þ
n;‘ ðz0Þ

�����
�����

¼
X1

n¼pþ1

Sð2Þnþmðw� z0ÞMð2Þ
n;‘ ðz0Þ

�����
�����: ð49Þ

Next, considering the bounds Eqs. (46) and (47), we get that
Sð2Þnþmðw0 � z0ÞMð2Þ
n;‘ ðz0Þ

��� ��� 6 kukL1ðC‘Þe
jmjr jmj þ kmskL1ðC‘Þ

n
þ 1

r

� �
� ðnþm� 1Þ!
ðjmjrÞmdnþmðn� 1Þ!

Xnþm�1

k¼0

ðjmjrdÞk

k!
:

Consequently, the error is bounded by the series

Em ¼
X1

n¼pþ1

Sð2Þnþmðw0 � z0ÞMð2Þ
n;‘ ðz0Þ

�����
�����

6

kukL1ðC‘Þe
jmjrð1þdÞ

jmjmrmdm

jmj þ kmskL1ðC‘Þ

pþ 1
þ 1

r

� � X1
n¼pþ1

ðnþm� 1Þ!
ðn� 1Þ! d�n

:

ð50Þ

Now, let us note that the last term above admits the representation

X1
n¼pþ1

ðnþm� 1Þ!
ðn� 1Þ! .n

¼ ðmþ pÞ!
p!

.pþ1
2F1ðmþ pþ 1;1; pþ 1;.Þ; 0 < . ¼ d�1

< 1;

ð51Þ

where 2F1 is the Gauss hypergeometric function (cf. [45]). Then,
from [52, Theorem 1.10] we get the inequality

m!ðmþ pþ 1Þ!
ð2mþ pþ 1Þ! <

2F1ðmþ pþ 1;1; pþ 1;.Þ
ð1� .Þ�m�1 < 1;

which is valid for all m P 1. From here we find that the error bound

Em 6
kukL1ðC‘Þe

jmjrð1þdÞ

jmjmrm

jmj þ kmskL1ðC‘Þ

pþ 1
þ 1

r

� �
ðmþ pÞ!

p!

ðd� 1Þmþ1

d2mþpþ2

is valid for all m P 1. Finally, for the case m ¼ 0 the error bound fol-
lows directly from the fact that /EiðwÞ ¼ Lð2Þ0;‘ ðw0Þ and the proof of
Proposition 4.1. h

The next proposition establishes an error bound for the local
expansion of /EiðwÞ.

Proposition 4.3. Let the points w;w0 and z0 in Cþ be such that
jw�w0j < r; jz� z0j < r and jw0 � z0j > rðdþ 1Þ for all z 2 C‘, where
r > 0 and d > 1 (see Fig. 2). Also let m 2 C such that 0 6 arg m 6 p=2.
Then, the error bound

/EiðwÞ �
Xp

m¼0

Rð2Þm ðw0 �wÞLð2Þm;‘ðw0Þ
�����

�����
6 kukL1ðC‘Þe

jmjrð1þdÞ 1
rd
þ
jmj þ kmskL1ðC‘Þ

pþ 1

� �
d�p

d� 1
ð52Þ
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holds true for all p P 1, where Rð2Þm and Lð2Þm;‘ are defined in Eqs. (25) and
(40), respectively.

Remark 4.3. The error bound Eq. (52) is also valid for /EiðwÞ.

Proof. First we observe that thanks to the local expansion Eq. (39),
the error can be explicitly expressed as

E ¼ /EiðwÞ �
Xp

m¼0

Rð2Þm ðw0 �wÞLð2Þm;‘ðw0Þ
�����

�����
¼

X1
m¼pþ1

Rð2Þm ðw0 �wÞLð2Þm;‘ðw0Þ
�����

�����:
In order to find bounds for the terms in the series defining the error,
we compare the addition formula for the functions Sð2Þn given in Eq.
(29), the definition of the moments Eq. (35), and the M2L formula
Eq. (40), to realize that

Lð2Þm;‘ðw0Þ ¼ �
Z

C‘

gSð2Þ0m ðw0 � zÞ þ msðzÞSð2Þm ðw0 � zÞ
n o

uðzÞdrz:

Now, from the definition of Sð2Þn in can be inferred that

Sð2Þ0m ðzÞ ¼ �im Sð2Þm ðzÞ þ Sð2Þmþ1ðzÞ
n o

; m P 1:

Therefore, by means of the bound for Sð2Þn given in Eq. (46), we
achieve that

Sð2Þ0m ðw0 � zÞ
��� ��� 6 m!ejmjrd

jmjmðrdÞm
jmj
m
þ 1

rd

	 

because due to the triangular inequality we have that jw0 � zj > rd
under the assumptions that jw0 � z0j > rðdþ 1Þ and jz� z0j < r.
Accordingly, we get the bound

Lð2Þm;‘ðw0Þ
��� ��� 6 kukL1ðC‘Þ

m!ejmjrd

jmjmðrdÞm
1
rd
þ
jmj þ kmskL1ðC‘Þ

m

� �
;

which, together with

Rð2Þm ðw0 �wÞ
��� ��� 6 jmjmrmejmjr

m!

leads to

Rð2Þm ðw0 �wÞLð2Þm;‘ðw0Þ
��� ��� 6 kukL1ðC‘Þ

ejmjrð1þdÞ

dm
1
rd
þ
jmj þ kmskL1ðC‘Þ

m

� �
:

Finally, taking into consideration that m�1
6 ðpþ 1Þ�1 when

m P pþ 1, we get the bound

E 6 kukL1ðC‘Þe
jmjrð1þdÞ 1

rd
þ
jmj þ kmskL1ðC‘Þ

pþ 1

� �
d�p

d� 1
: �
4.4. FM-BEM algorithm

In this subsection we give the details of the FM-BEM algorithm,
which thanks to the previously obtained multipole and local
expansions, corresponds, in general terms, to the classic adaptive
algorithm for potential problems (cf. [21,38,53]).

For a given problem’s domain Xe, we discretize the perturbed
part of its boundary Cp in the same way as in the conventional

BEM approach, that is, assuming it given by Cp ¼
SN
‘¼1C‘ where

each C‘ is a straight line segment. Subsequently we construct a

square placed on R2
þ containing all the N boundary segments com-

posing Cp, which is the 0 level cell. Then, an adaptive data structure
is built recursively by dividing the 0 level cell into four child cells of
level 1. If the cell under consideration contains no segments, i.e., no
middle point of a segment is contained in the cell, it is immediately
forgotten. If the cell contains fewer than s segments—where s is an
appropriately chosen positive integer—it is not subdivided further
and is considered a leaf cell. Otherwise, it is regarded as a parent
cell and is subdivided into four child cells. This procedure is then
repeated for each one of the following cells.

Let us now introduce some important definitions. Two cells at
the same level l are said to be adjacent cells at level l if they have
at least one common vertex. Two cells are said to be well separated
at level l if they are not adjacent at level l but their parent cells are
adjacent at level l� 1. The list of all well-separated cells from a le-
vel l cell c is called the interaction list of c. Cells at the same level of
c, are called to be far cells of c if their parent cells are not adjacent
to the parent cell of c. Finally, we generalize the notion of the adja-
cency for leaf cells at different levels. Accordingly, two leaf cells c1

and c2 at levels l1 and l2 (l1 < l2) respectively, are adjacent, if the
level l1 cell to which c2 belongs is adjacent to c1 at level l1.

The algorithm for the matrix–vector multiplication between K
and a complex vector v 2 CN is then carried out through the
following steps:

1. Upward pass. Multipole moments are calculated for each cell at
all levels l P 2 for n ¼ 0; . . . ; p. Starting from the biggest level,
the moments are computed first for each leaf cell c applying
directly Eqs. (35) and (36), taking z0 equal to the center of c;
considering uðzÞ ¼

P
jv jujðzÞ where the sum is taken over all

the basis functions uj having support on ‘; and adding the con-
tributions of all the segments ‘ contained in c. For a parent cell,
the moments are computed by shifting the moments of its child
cells to the parent cell center z00 by using M2M translation for-
mulae Eqs. (37) and (38). Adding the contributions of all its
child cells we achieve the moments of c. We continue the
M2M translations upward until the level 2 is reached.

2. Downward pass. Local expansion coefficients for m ¼ 0; . . . ; p are
computed on all cells starting from level 2 and tracing the tree
structure downward. The local coefficients associated with a
cell c is the sum of the contributions of cells in its interaction
list and cells far from c. The contributions of cells in the interac-
tion list are calculated through the M2L translation formulae
Eqs. (40) and (41), taking w0 as the center of c and considering
the moments of all the cells in the interaction list. The contribu-
tions of far cells are calculated by using L2L translations formu-
lae equations (42) and (43), with the local coefficients at the
expansion point w00, the center of the parent cell of c, being
shifted to w0, the center of c. For a cell c at level 2, we use only
the M2L translation formulae to compute the coefficients of the
local expansion.

3. Evaluation of the matrix–vector product. For a colocation point wi

in a leaf cell c, we evaluate the associated ith coordinate of Kv as
the sum of two parts. The contributions from segments in the
leaf c and its adjacent cells, are evaluated directly in the way
of the conventional BEM. The contributions from all other seg-
ments are obtained from the local expansion Eq. (39) achieved
by taking w ¼ wi and using the local coefficients of c computed
in the downward pass. The remaining coordinates are com-
puted in exactly the same way.

Let us observe that no interactions between well separated cells
are computed by using multipole expansions. Therefore, we are al-
lowed to choose d = 2 in Propositions 4.1–4.3 (cf. [18,49,53]) and
consequently all the expansions upon which the algorithm is based
are valid as well as error bounds Eqs. (44), (48), and (52). Further-
more, it can be inferred from here that given a Robin parameter, a
discretization of the perturbed boundary, and a quad-tree structure,
the truncation error is bounded by C2�p; C > 0. Therefore, like the
classical FMM algorithm for particle simulations, in order to obtain
a relative precision �; p would have to be chosen of order jlog2ð�Þj.
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As in the classical adaptive FM-BEM for potential problems in
the plane (cf. [53,38]), it can be estimated that the resulting algo-
rithm for a matrix–vector product exhibits an asymptotic compu-
tational complexity of OðNÞ. Accordingly, the solution of the
linear system Eq. (12) through an iterative algorithm would pres-
ent the same computational complexity if a moderate number of
iterations ð� NÞ are required to achieve an approximate solution
within a prescribed tolerance.
5. Numerical examples

In this section we present some examples to demonstrate the
efficiency and accuracy of the FM-BEM for solving potential
problems defined in locally perturbed half-planes with a Robin
boundary condition. The algorithm was implemented in Fortran
95 and the codes have been tested in a laptop PC with an Intel
2.4 GHz CPU and 2 GB RAM. In all the examples we use constant
basis functions and collocation points placed at the middle of each
boundary segment. The iterative method for solving the linear
algebraic system is the version of the GMRES presented in [53]
which is based on the reverse communication mechanism for the
matrix–vector product. The exponential integral function is
numerically evaluated by using the subroutines of Amos [55] and
Fig. 3. Relative error Eh produced by the FM-BEM a

Fig. 4. CPU time required by the FM-BEM and
Morris [56], whereas the functions Sð2Þn are computed through the
recurrence relation Eq. (22), which has been proved to be stable
[50].

5.1. Benchmark problem

First of all, to validate the proposed FM-BEM method, we con-
sider as benchmark problem a domain Xe taken as the exterior of
a half-circle of radius R = 1 centered at the origin. The perturbed
boundary Cp is then given by the upper half-circle, and the Robin
parameter ms is chosen constant throughout C. As boundary data
we take

f ðxÞ ¼ � @Gðx; zÞ
@nx

þ msðxÞGðx; zÞ;

with the source point z ¼ ð0;0Þ. In this case the exact solution of Eq.
(1) is given by

uðxÞ ¼ �Gðx; zÞ:

As the exact solution of the problem is known, we can test the accu-
racy of the proposed method by comparing the exact solution with
the approximate solution through a relative error defined as
nd the BEM to solve the benchmark problem.

the BEM to solve the benchmark problem.
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Eh ¼
kuh � ukL2ðCpÞ

kukL2ðCpÞ
:

Figs. 3 and 4 compare the FM-BEM and the conventional BEM
using the LU decomposition and the GMRES algorithm for the
solution of the linear system stemming from the discretization of
the boundary integral equation of the benchmark problem. The re-
sults of the FM-BEM were obtained by taking p = 15 and s = 20.
Convergence was reached after 8 GMRES iterations using an error
tolerance of 1e-10. Fig. 3(a), (b) compare the error Eh for a real
and a complex Robin parameter for different mesh sizes h. As can
be observed in the results, no accuracy differences can be appreci-
ated between the considered methods. On the other hand, Fig. 4(a),
Fig. 5. Plot of juT j for four different values of the Ro
(b) demonstrate the efficiency of the proposed method by compar-
ing the CPU time taken by the FM-BEM and the conventional BEM
to solve the benchmark problem for a real and a complex Robin
parameter.

5.2. A scattering problem

From the linear theory of water-waves (cf. [2]) we know that a
one-dimensional plane surface-wave of the form uIðxÞ ¼ e�mðix1þx2Þ

is allowed to propagate undisturbed along the flat boundary of
an unperturbed half-plane with a Robin parameter m. Thus, when
a compact perturbation of the half-plane is taken into account,
the solution of the differential problem Eq. (1) with boundary data
bin parameter in a mesh with up to 1e5 nodes.
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f ðxÞ ¼ � @uIðxÞ
@n

þ msðxÞuIðxÞ; x 2 C

represents the scattered field due to obstacles or variations of ms

encountered by the surface incident wave uI.
As an example we consider the scattering by an array of 121

equally spaced cylinders placed in the half-plane, as is shown in
Fig. 5. The boundary mesh accounts for up to 100000 nodes. The
resulting integral Eq. (9) was solved using the FM-BEM for four dif-
ferent values of the Robin parameter. Fig. 5 depicts the absolute va-
lue of the total field uT ¼ uI þ u for each case. This example clearly
demonstrates the efficiency of the FM-BEM for solving large scale
problems, despite the large number of GMRES iterations needed
to get the desired accuracy in some cases.

It has to be pointed out that the method becomes prohibitively
expensive for some values of the Robin parameter ms. Two different
factors explain this drawback. On one hand, it is observed that for a
fixed number of terms of the multipole expansions the truncation
error grows with ms. This phenomenon is captured by the error
bounds obtained in Section 4.3 and is related with the appearance
high-frequency oscillations of the solution in the neighborhood of
the boundary. On the other hand, we notice that the problem may
become very ill-conditioned for a countable set of values of the
impedance parameter ms associated with the Steklov eigenvalues
of the problem, which seems to be the phenomenon observed in
this example. This drawback can be partially suppressed by intro-
ducing a suitable preconditioner (cf. [25]) or by modifying the
boundary integral equation.
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