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ABOUT SOME BOUNDARY INTEGRAL OPERATORS
ON THE UNIT DISK RELATED TO THE LAPLACE EQUATION∗

PEDRO RAMACIOTTI† AND JEAN-CLAUDE NÉDÉLEC‡

Abstract. We introduce four integral operators related to the Laplace equation in three dimen-
sions on the circular unit disk. Two of them are related to the weakly singular operator and the other
two are related to the hypersingular operator. We provide series expressions for their kernels using
proposed bases for the Sobolev trace spaces involved in the symmetric Dirichlet and antisymmetric
Neumann Laplace screen problems on the disk. We then provide explicit and closed variational forms
suitable for boundary element computations. We develop numerical computation schemes for the
associated Galerkin matrices and test their use as preconditioners for the matrices arising from the
integral equations associated with the solution of the mentioned screen problems.

Key words. open surface problem, boundary integral operators, boundary element methods,
preconditioners for iterative methods

AMS subject classifications. 45P05, 65N38, 65N12, 31A10, 46E35, 65F08

DOI. 10.1137/15M1033721

1. Introduction. We consider the boundary integral operators related to the
Dirichlet and Neumann boundary value problems for the exterior Laplace problem
(1). The results for the Helmholtz problems follow as a compact perturbation of this
case. Applications of such problems arise in many physical contexts. The Dirichlet
or Neumann Laplace problem for the exterior of an obstacle Ω ⊂ R3 embedded in a
three-dimensional space can be stated as

(1)


−∆u = 0 in R3 \ Ω,

u = g or
∂u

∂n
= ϕ on Γ = ∂Ω,

for suitable spaces defined over R3 \Ω for u and over Γ for g or ϕ. When solving these
problems in unbounded homogeneous exterior domains, boundary element methods
are a suitable option because they respect the physical behavior at infinity and be-
cause they only require the boundaries to be meshed, in contrast with the so-called
domain methods. The boundary element methods first convert the partial differential
equations to first kind boundary integral equations, which can then be solved numer-
ically [12, 14, 7]. The resulting boundary integral equations are linked to the weakly
singular and hypersingular boundary integral operators

(2) (Sλ)(y)=
∫

Γ
G(x,y)λ(x)dΓ(x) and (Nµ)(y)=

∫
Γ

∂2G

∂nx∂ny
(x,y)µ(x)dΓ(x),
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where G(x,y) = (4π‖x − y‖)−1 is the associated Green’s function for the Laplace
equation, and λ and µ functions defined over Γ.

The Galerkin matrices arising from the variational formulations for the related
boundary integral equations are dense, and thus the algorithmic and memory com-
plexity is elevated for the resolution of the associated linear systems. This is even
more relevant in three dimensions. The algorithmic and memory complexity can be
treated with compression and acceleration methods such as the fast multipole method,
the panel clustering method, or the hierarchical matrix method with adaptive cross
approximation methods. But these techniques rely on iterative solvers, for which the
control of the number of iterations, and thus the control of the condition number of
the associated matrix, becomes crucial in providing low complexity, high accuracy
methods. In the case of the first kind boundary integral equations it can be proved
that the spectral condition number will grow as O(h−1), where h is the smallest cell
of mesh [16, section 3.5.3], making preconditioning indispensable. Also, the accuracy
of the results depends on the condition number when there are numerical errors in the
computations of the elements of the matrix and the right-hand-side vectors [2, sec-
tion 2.6.2]. This provides additional motivation for the improvement of the condition
number.

When the obstacle Ω has a Lipschitz-regular boundary Γ, Dirichlet and Neumann
trace spaces are dual to each other. The weakly singular and the hypersingular bound-
ary integral operators (2) induce linear, continuous, and coercive bilinear variational
forms that give rise to Galerkin matrices that act as mutual optimal precondition-
ers [4]. In this case, low condition numbers are ensured by the Calderón identities.
When the domain is not Lipschitz-regular, e.g., in the case of a screen problem, when
the interior domain is void and the surface Γ is not closed (∂Γ 6= ∅), the mapping
properties of the weakly singular and the hypersingular boundary integral operators
degenerate: the trace spaces associated with them are no longer dual to each other,
the Calderón identities no longer hold, and the Galerkin matrices no longer provide
optimal mutual preconditioning. The so-called screen problems have, however, nu-
merous applications, such as in crack problems in mechanics [15, 13] and antenna and
printed circuit board models [17].

Different approaches have been tried to tackle this problem. Despite the fact
that the Calderón identities no longer hold for screen boundaries, the weakly singular
and the hypersingular boundary integral operators do precondition each other to
some degree, as proposed in [11], although not in an asymptotically optimal manner,
with the spectral condition number growing as O(|log h|). Another approach, called
the generalized Calderón formula for open boundaries, provides good preconditioning
tools [10], but no asymptotical estimations are available.

Recently, explicit variational inverses have been found by Jerez-Hanckes and
Nédélec for the boundary integral operators (2), along with precise space mapping
properties and Calderón-type identities for the segment screen (Γ = (−1, 1) × {0})
in R2 [8]. These inverse operators induce linear, continuous, and coercive bilinear
variational forms in the dual spaces for each operator and thus provide a means to
build preconditioning Galerkin matrices [5]. These results have also been proved to
be extensible to the boundary integral operators linked to the Helmholtz equation
and to curves other than the segment via a sufficiently regular curve transformation.

In this article we propose new boundary integral operators for the case disk screen
in R3 extending key properties of the inverse ones proposed for two dimensions in
[8], now into three dimensions. First we describe the geometrical and functional
framework of the problem. Then we consider appropriate basis functions to develop
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series expressions of the distributions of the relevant trace spaces involved in the
Laplace problems. We use these series expressions to propose new boundary inte-
gral operators on the disk in R3 that aim to preserve some key features of the ones
previously proposed for the segment in R2. We provide Calderón-type identities for
these operators and we develop explicit and closed variational forms for them, suit-
able for boundary element computations. Finally, we use these boundary element
computations to build Galerkin matrices and test the preconditioning action of these
boundary integral operators when applied to the matrices involved in the resolution
of the Dirichlet and Neumann Laplace screen problem.

2. Geometrical and functional framework.

2.1. Geometrical setting. Let x = (x1, x2, x3) ∈ R3 be a point in three-
dimensional space. We take interest in the unit disk in R3: D = {x ∈ R3 : x3 =
0, x2

1 + x2
2 < 1}. The domain for the Laplace Dirichlet of Neumann obstacle problem

for the unit disk screen obstacle is denoted by ΩD = R3 \ D.
We also consider the unit sphere S in R3. The plane π = {x : x3 = 0} divides

the unit sphere into the upper half-sphere S+ and the lower half-sphere S−. For a
point on S, we consider the spherical coordinate system (θ, φ), where θ and φ are the
classical Euler angles (θ ∈ [0, π] and φ ∈ [0, 2π]): x1(θ, φ) = sin θ cosφ,

x2(θ, φ) = sin θ sinφ,
x3(θ, φ) = cos θ,

{
θ(x) = θx = arccos (x3) ,
φ(x) = φx = arctan (x2/x1) ,

For a point on the disk in Cartesian coordinates (x1, x2) ∈ R2 we also consider
cylindrical coordinates (ρ, φ), where ρ is the radius.{

x1(ρ, φ) = ρ cosφ,
x2(ρ, φ) = ρ sinφ,

{
ρ(x) = ρx =

√
x2

1 + x2
2 = sin θ,

φ(x) = φx = arctan (x2/x1) .

To a point x ∈ D we associate x± ∈ S±, the vertical projection onto the upper
and lower half-spheres. Likewise, points x± ∈ S± have a vertical projection x ∈ D
onto the disk.

We define a function w(ρ) =
√

1− ρ2 = cos θ, also w(x) =
√

1− ρ2
x, relating the

radius ρ of a point x ∈ D with the distance to its vertical projections on the unit
sphere S, such that, for x = (ρ, φ) ∈ D, x±(ρ, φ) = (ρ cosφ, ρ sinφ,±w(ρ)).

2.2. Sobolev trace spaces for the disk in R3. Using the usual notation for
Sobolev spaces, for any s > 0, H̃s(D) is the space of distributions whose extension by
zero to π belongs to Hs(π). It is noteworthy that H̃1/2(D) ⊆ H1/2

0 (D). We identify

H̃−1/2(D) ≡
(
H1/2(D)

)′
and H−1/2(D) ≡

(
H̃1/2(D)

)′
,

where prime designates a dual space. Duality pairings on the disk are written with
angular brackets 〈·, ·〉D, and inner products with parentheses (·, ·), both sesquilinear.
Relations of inclusion between the identified spaces are given by [18]

H̃1/2(D) ⊂ L2(D) ⊂ H−1/2(D), H1/2(D) ⊂ L2(D) ⊂ H̃−1/2(D).

2.3. Preconditioning. The symmetric Neumann and antisymmetric Dirichlet
Laplace screen problems do not require recasting as boundary integral equations; one
just introduces the Dirichlet and Neumann data respectively into the single layer and
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double layer integral potential operator [14, equations 3.1.33 and 3.1.34] to compute
the solution u to the problem (1) in the whole problem domain. When considering the
symmetric Dirichlet and antisymmetric Neumann screen problems, we need to make
use of boundary integral operators (2) to recast the problem as boundary integral
equations. Indeed, given the Dirichlet data g ∈ H1/2(D), a function u is the solution
in H1

loc(ΩD) to the Dirichlet problem if and only if the jump of the Neumann trace
across D, i.e., if λ = [∂u/∂n] solves Sλ = g [19, Theorem 2.5]. Similarly, given the
Neumann data ϕ ∈ H−1/2(D), a function u is the solution inH1

loc(ΩD) to the Neumann
problem if and only if the jump of the Dirichlet trace across D, i.e., if µ = [u] solves
−Nµ = ϕ [19, Theorem 2.6]. We also know that if u ∈ H1

loc(ΩD) is the solution to
(1), its traces are such that λ ∈ H̃−1/2(D) and µ ∈ H̃1/2(D) [19, Theorem 2.2]. This
impedes mutual optimal operator preconditioning, as becomes clear in light of the
following theorem.

Theorem 2.1 (operator preconditioning [4, Theorem 2.1]). Let V and W be
reflexive Banach spaces. Let a ∈ L(V ×V,C), b ∈ L(W ×W,C), and d ∈ L(V ×W,C)
be continous sesquilinear forms. Finally, let Vh = span({χi}Ni=1) ⊂ V and Wh =
span({κi}Ni=1) ⊂ W be finite-dimensional subspaces of the same dimension on which
the following inf-sup conditions are fulfilled:

∀uh ∈ Vh sup
vh∈Vh

|a(uh, vh)|
‖vh‖V

≥ ca‖uh‖V , ∀qh ∈Wh sup
wh∈Wh

|b(qh, wh)|
‖wh‖W

≥ cb‖qh‖W ,

∀vh ∈ Vh sup
wh∈Wh

|d(vh, wh)|
‖wh‖W

≥ cd‖vh‖V .(3)

Let us define the Galerkin matrices A[i, j] = a(χi, χj), B[i, j] = b(κi, κj), and
D[i, j] = d(χi, κj), and let us define the preconditioning matrix M = D−1BD−H .
The spectral condition number of the preconditioned matrix MA has the following
bound: cond2(MA) ≤ ‖a‖‖b‖‖d‖

2

cacbc2d
.

When posed over Lipschitz-regular surfaces Γ, boundary integral operators S and
N induce continuous sesquilinear forms in H−1/2(Γ) and H1/2(Γ), which are mutual
dual spaces. Considering zeroth and first order Lagrange finite elements supported by
triangular primary and polygonal dual meshes as in [18, section 2.2] (which we revisit
in section 4.1) satisfies condition (3) of the theorem while providing finite subspaces
with the same dimensions. All these conditions satisfy the hypotheses of the previous
theorem, thus yielding optimal preconditioning.

As seen before, this approach no longer applies when Γ is a screen, in particular
D. In the case of the screen obstacle, operators S and N map trace spaces into their
duals, inducing coercive bilinear forms, but the spaces do not coincide: we have four
spaces instead of two. A possible solution is finding inverses to these operators to use
in operator preconditioning. This is, in general, a difficult goal. It has been achieved
for the segment screen in R2 in [8] and more recently for the disk in R3 but only
for N . This exact inverse (derived in R3 using additional tools, most notably [9])
induces a coercive, continuous bilinear form in H−1/2(D), thus providing an optimal
preconditioner, as has been tested in numerical experiments [6]. By contrast, the new
operators presented in this article are not the inverses of S and N . They have been
conceived to mimic the key properties that allowed for improvement of the condition
number in the case of the segment in R2. These properties are related to singular
behavior near the edge of the screen, described by the function w. For the segment
screen in R2, the weakly singular kernel of the inverse integral operator N−1, denoted
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Kws
as , and the hypersingular kernel of the inverse operator S−1, denoted Khs

s , had the
following series expressions:

(4) Kws
as (x, y)=

∞∑
n=1

w(x)w(y)
n

Un−1(x)Un−1(y) and Khs
s (x, y)=

∞∑
n=1

2n
Tn(x)Tn(y)
w(x)w(y)

,

where now w(x) =
√

1− x2, and Tn and Un are the first and second kind Tcheby-
shev polynomials. We take the behavior of these kernels as hints for the proposal of
new boundary integral operators on the disk that play a similar role in an operator
preconditioning technique.

3. Some boundary integral operators on the disk. In order to specify the
proposed boundary integral operators we make use of special basis functions defined
on the disk. The definition of these functions are motivated by the following remark.

Remark 3.1 (jump of the traces near the edge of the disk). If u is the solution of
the Laplace screen problem for the disk, the jump of the Neumann trace behaves as
λ ∼ 1/

√
1− ρ2 near the edge, i.e., ρ ∼ 1, and the jump of the Dirichlet trace behaves

as µ ∼
√

1− ρ2 near the edge [19, Theorem 2.9].

3.1. Disk basis functions.

Definition 3.2 (vertical projection of the spherical harmonics). We define the
2l + 1 disk basis functions of order l ≥ 0 on D as

yml (x) = yml (ρ, φ) = γml e
imφPml (w(ρ)) = γml e

imφPml (cos θ) = Y ml (θ, φ) = Y ml (x+)

for −l ≤ m ≤ l, where γml = (−1)m
√

l+1/2
2π

√
(l−m)!
(l+m)! and Y ml is the spherical harmonic

of order l and degree m [14, section 2.4.3].

The disk basis functions have an orthogonality property on D, inherited from the
orthogonality of the spherical harmonics on S.

Proposition 3.3 (orthogonality identity on D). If l1 +m1 and l2 +m2 have the
same parity, the following orthogonality identity holds:∫

D

ym1
l1

(x)ym2
l2

(x)
w(x)

dD(x) =
1
2
δm1
m2
δl1l2 .

Proof. The change of variable ρ = sin θ, along with the identity yml (ρ, φ) =
Y ml (θ(x+), φ(x+)), implies that∫

D

ym1
l1

(x)ym2
l2

(x)
w(x)

dD(x) =
∫

S+
Y m1
l1

(x)Y m2
l2

(x)dS+(x)

= γm1
l1
γm2
l2

2πδm1
m2

∫ 1

0
Pm1
l1

(t)Pm2
l2

(t)dt.

Since l1 + m1 and l2 + m2 have the same parity, so do they have the two associated
Legendre functions. Thus the last integral is equal to 1/2 of the integral over [−1, 1]
of the multiplied associated Legendre functions, yielding the desired results.

Let us define some sets of basis functions that will be used in series representation
of functions and kernels defined for the spaces defined in section 2.2.
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Definition 3.4 (symmetric and antisymmetric sets). We define the following
sets using the disk basis functions and the weight function w:

Ys = {yml : −l ≤ m ≤ l, and l +m is even}, Y1/w
s =

{
yml
w

: yml ∈ Ys
}
,

Yas = {yml : −l ≤ m ≤ l, and l +m is odd}, Y1/w
as =

{
yml
w

: yml ∈ Yas
}
.

Remark 3.5 (behavior of the disk basis functions in the radial direction). The
functions from spaces Ys and Y1/w

as are polynomial in variable ρ in the radial direc-
tion. The functions from the space Yfas are of the form p(ρ)

√
1− ρ2 in the radial

direction, where p is a polynomial. The functions from the space Y1/w
s are of the form

p(ρ)/
√

1− ρ2 in the radial direction, where p is a polynomial.

Definition 3.6 (sesquilinear forms associated with w and 1/w). Let us notate by
(·, ·)w and (·, ·)1/w the following sesquilinear forms associated with the weight function
w:

(u, v)w =
∫

D
u(x)v(x)w(x)dD(x) and (u, v)1/w =

∫
D
u(x)v(x)w−1(x)dD(x).

Definition 3.7 (the L2
w(D) and the L2

1/w(D) spaces). Let us define the space

L2
w(D), associated with the inner product (·, ·)w and to the norm ‖u‖w =

√
(u, u)w, as

L2
w(D) = {u measurable : ‖u‖w <∞}

and the space L2
1/w(D), associated with the inner product (·, ·)1/w and to the norm

‖u‖1/w =
√

(u, u)1/w, as

L2
1/w(D) =

{
u measurable : ‖u‖1/w <∞

}
.

Proposition 3.8 (bases for L2
w(D) and L2

1/w(D)). The sets Y1/w
s and Y1/w

as

form, each one, an orthogonal and complete basis for L2
wD. Likewise, the sets Ys and

Yas form, each one, an orthogonal and complete basis for L2
1/wD.

Proof. Orthogonality follows from Proposition 3.3. The sets Y1/w
s and Y1/w

as are
subsets of L2

w(D), since they have a finite norm. If Y1/w
s was not dense in L2

w(D),
there would be a member f ∈ L2

w(D) not a.e. equal to zero and orthogonal to all
members of Y1/w

s , i.e.,(
f ,

yml
w

)
w

=
∫

D
f(x)yml (x)dD(x) = 0 for l ≥ 0, −l ≤ m ≤ l, l +m even.

But for l+m even, the set of functions yml is dense in C∞(D). Thus f would be zero
a.e., contradicting the premise. The same argument can be used for l+m odd, except
that yml functions in the radial direction are w(ρ)p(ρ), where now p is polynomial.

Similarly, Ys and Yas are subsets of L2
1/w(D). If Ys was not dense in L2

1/w(D),
there would be a member f ∈ L2

1/w(D) not a.e. equal to zero such that (f , yml )1/w = 0
for every yml ∈ Ys. But following the previous reasoning, that would mean that f/w is
zero a.e., thus also f itself. Extending the same reasoning to Yas finishes the proof.
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Remark 3.9 (jump of the traces near the edge of the disk). Remarks 3.1 and
3.5 motivate the expansion of functions in H̃1/2(D) on the space L2

1/w on the basis
Yas, functions in the space H1/2(D) on the space L2

1/w on the basis Ys, functions in

the space H−1/2(D) on the space L2
w on the basis Y1/w

as , and functions in the space
H̃−1/2(D) on the space L2

w on the basis Y1/w
s .

In the next section we propose some new boundary integral operators. They are
defined as convolution operators with kernels defined on D, conceived to exhibit sin-
gular behavior near the edge, resembling that of the kernels of the inverse integral
operators derived for the segment in R2. Their closed-form expressions have similar-
ities with those involved in the method of images, used to derive half-space Green’s
functions. Although similar, they are not directly related. The use of mirror points in
the developments presented in the next section are due to convenient transformations
of the unit disk screen object into another one whose interior is not void, in this case,
the unit sphere for convenience. These transformations show how the disk can be seen
as a sphere collapsed into a two-sided screen by a limit process, making the exterior
domain lose its Lipschitz-regularity.

3.2. Some boundary integral operators. Using the known behavior on ρ of
the disk basis functions, we propose new integral kernels defined on D. Two of these
kernels have the same behavior of the kernels of the inverse operators in the case of
the segment in R2 along the radius (on the ρ direction).

Definition 3.10 (new integral kernels for the disk). Let us define the following
two weakly singular integral kernels for (x,y) ∈ D× D with x 6= y:

Kws
s (x,y) =

∞∑
l=0

l∑
m=−l
l+m even

ζly
m
l (y)yml (x) and Kws

as (x,y) =
∞∑
l=0

l∑
m=−l
l+m odd

ζly
m
l (y)yml (x)

with ζl = 2/(2l + 1). Similarly, let us define the following two hypersingular integral
kernels for (x,y) ∈ D× D with x 6= y:

Khs
s (x,y) = −

∞∑
l=0

l∑
m=−l
l+m even

ηl
yml (y)
w(x)

yml (x)
w(y)

and Khs
as (x,y) = −

∞∑
l=0

l∑
m=−l
l+m odd

ηl
yml (y)
w(x)

yml (x)
w(y)

with ηl = 2l(l + 1)/(2l + 1).

The behavior on ρ of the proposed kernels Kws
as and Khs

s matches that of those
derived for the segment in R2 in that they have same singularity near the edge. This
becomes clear comparing the behavior on ρ described in Remark 3.5 with that of the
kernels for the segment in (4). The coefficients of the series are chosen following [14,
equations 3.2.30 and 3.2.31], which provides a tool for relating series expressions of
the kernels to closed-form expressions.

Definition 3.11 (associated boundary integral operators). For y ∈ D we define
the following boundary integral operators:

(Ssλ) (y) =
∫

D
Kws
s (x,y)λ(x)dD(x), (Sasϕ) (y) =

∫
D
Kws
as (x,y)ϕ(x)dD(x),

(Nsg) (y) =
∫

D
Khs
s (x,y)g(x)dD(x), (Nasµ) (y) =

∫
D
Khs
as (x,y)µ(x)dD(x).
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Proposition 3.12 (mapping properties of the new boundary integral operators).
The boundary integral operators from Definition 3.11 have the following mapping prop-
erties:

Ss
yml
w

=
ζl
2
yml and Nsyml = −ηl

2
yml
w

for l +m even,

Sas
yml
w

=
ζl
2
yml and Nasyml = −ηl

2
yml
w

for l +m odd.

Proof. Let us analyze the first case.(
Ss
yml
w

)
(y) =

∞∑
l′=0

l′∑
m′=−l′
l′+m′ even

ζl

∫
D
ym
′

l′ (y)ym′l′ (x)
yml (x)
w(x)

dD(x).

Using the orthogonality relation of Proposition 3.3 the desired results follow straight-
forwardly. The same procedure proves the other three cases.

Proposition 3.13 (Calderón-type identities for new boundary integral opera-
tors). The following operator composition identities hold for the boundary integral
operators from Definition 3.11:

−Ns ◦ Ssλ =
1
4

(
I +

1
w
Ss
(

1
w
Ssλ

))
, −Nas ◦ Sasϕ =

1
4

(
I +

1
w
Sas

(
1
w
Sasϕ

))
,

−Ss ◦ Nsg =
1
4

(
I + Ss

(
1
w
Ss
( g
w

)))
, −Sas ◦ Nasµ =

1
4

(
I + Sas

(
1
w
Sas

( µ
w

)))
.

Proof. Let us prove the first identity for Ns ◦Ss. Using Proposition 3.12 it’s easy
to see that

− (Ns ◦ Ss)λ =
1
4

∞∑
l=0

l∑
m=−l
l+m even

ζlηlλ
m
l

yml
w

=
∞∑
l=0

l∑
m=−l
l+m even

l(l + 1)
(2l + 1)2λ

m
l

yml
w
.

This expression can be separated as

∞∑
l=0

l∑
m=−l
l+m even

l(l + 1)
(2l + 1)2λ

m
l

yml
w

=
∞∑
l=0

l∑
m=−l
l+m even

λml
yml
w
−
∞∑
l=0

l∑
m=−l
l+m even

3l2 + 3l + 1
(2l + 1)2 λml

yml
w

=λ− 3
∞∑
l=0

l∑
m=−l
l+m even

l(l + 1)
(2l + 1)2λ

m
l

yml
w
−
∞∑
l=0

l∑
m=−l
l+m even

λml
(2l + 1)2

yml
w

⇒ −4 (Ns ◦ Ss)λ = λ−
∞∑
l=0

l∑
m=−l
l+m even

1
(2l + 1)2λ

m
l

yml
w
.(5)

The last term of the equation is easy to compose using operator Ss. It is easy to see
that

1
w
Ss
(

1
w
Ssλ

)
=
∞∑
l=0

l∑
m=−l
l+m even

1
(2l + 1)2λ

m
l

yml
w
,
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which proves the first case. The case for Nas ◦ Sas is done in the same way but by
summing over l +m odd pairs.

In the case of Ss ◦ Ns,

− (Ss ◦ Ns) g =
∑
0≤l

∑
−l ≤ m ≤ l
l + m even

l(l + 1)
(2l + 1)2 g

m
l y

m
l .

Using again Proposition 3.3 it is easy to see that

Ss
(

1
w
Ss
( g
w

))
=
∑
0≤l

∑
−l ≤ m ≤ l
l + m even

1
(2l + 1)2 g

m
l y

m
l .

The procedure of the proof is then exactly as the previous two cases replacing yml /w
with yml . The case for Sas ◦Nas is done in the same way but summing over l+m odd
pairs.

3.3. Variational expressions. In this section we are interested in finding
closed-form variational expressions for the new boundary integral operators from Def-
inition 3.11. These variational expressions are needed for the computation of the
Galerkin matrices required by the boundary element methods. The following two
theorems provide the desired closed-form variational expressions for the new integral
operators defined in series expansions.

Theorem 3.14 (explicit and closed form of the weakly singular integral kernels).
The weakly singular integral operators from Definition 3.11 have the following explicit
and closed-form variational expressions:〈

Ssλ , λt
〉

D =
∫

D

∫
D

(
G(x+,y+) +G(x−,y+)

)
λ(x)λt(y)dD(x)dD(y),(6) 〈

Sasϕ , ϕt
〉

D =
∫

D

∫
D

(
G(x+,y+)−G(x−,y+)

)
ϕ(x)ϕt(y)dD(x)dD(y).(7)

Proof. Let us first consider the case of Kws
s . Let us consider a projection T : S→

D taking points on the sphere to their vertical projections on the disk (y = Ty+ =
Ty− ∈ D), to be used in integration by substitution. The application of Ss to a
function λ defined on the disk yields, for y ∈ D,

(Ssλ)(y) =
∫

D
Kws
s (x,y)λ(x)dD(x)

=
∫

S+

∞∑
l=0

l∑
m=−l
l+m even

ζlyml (Tx)yml (Ty+)λ(Tx)| cos θx|dS+(x).

Let us define λ+ = λ ◦ T over S+, so that the application of Ss can be fully pulled to
the upper sphere,

(Ssλ) (y) =
∫

S+

∞∑
l=0

l∑
m=−l
l+m even

ζlY ml (x)Y ml (y+)λ+(x)| cos θx|dS+(x).

Let us now define λ̃+ as the mirror reflection over S−, so that it is an even function
of x3, i.e., λ̃+(x+) = λ̃+(x−). Because Y ml (x) (for l + m even), | cos θx|, and λ̃+(x)
are even functions of x3, the integration can be computed on the whole sphere as
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(Ssλ) (y) =
1
2

∫
S

∞∑
l=0

l∑
m=−l
l+m even

ζlY ml (x)Y ml (y+)λ̃+(x)| cos θx|dS(x).(8)

Also, for the rest of the l, m pairs, when l+m is odd, Y ml is odd, so that the integrand
is also odd, and thus

l +m odd ⇒
∫

S
Y ml (x)Y ml (y+)λ̃+(x)| cos θx|dS(x) = 0.

Now these terms can be added to (8), so that the sum has all the l, m pairs:

(Ssλ) (y) =
1
2

∫
S

∞∑
0=l

l∑
m=−l

ζlY ml (x)Y ml (y+)λ̃+(x)| cos θx|dS(x).(9)

By construction ζl/2 = 1/(2l + 1) for which [14, equation 3.2.30] allows us to
rewrite (9).

(Ssλ) (y) =
∫

S
G(x,y+)λ̃+(x)| cos θx|dS(x)

=
∫

S+
G(x,y+)λ̃+(x)| cos θx|dS+(x) +

∫
S−
G(x,y+)λ̃+(x)| cos θx|dS−(x)

=
∫

D
G(x+,y+)λ(x)dD(x) +

∫
D
G(x−,y+)λ(x)dD(x)

=
∫

D

1
4π

(
1

‖x+ − y+‖ +
1

‖x− − y+‖

)
λ(x)dD(x).

This proves the identity (6) of the theorem.
The proof for Sas can be deduced using the same argument with some modifica-

tions. Starting with the series definitions for Sasϕ, a function ϕ+ = ϕ ◦ T is defined
to pull the integral over S+. Defining ϕ̃+ now as the odd mirror reflection, the same
key properties are obtained: (1) the integrand becomes even and thus it can be trans-
formed into an integral over S, and (2) the complementary l, m pairs (the even ones)
integrate as zero and can be added to complete the series. Once the expression of
the integral kernel for the sphere is recognizable from [14, equation 3.2.20], it can be
replaced and the integral then pulled back to the disk. Because ϕ̃+ is odd, the minus
sign appears, naturally differentiating this case from the previous one.

Theorem 3.15 (explicit and closed variational form of the hypersingular integral
kernels). The bilinear form induced by the hypersingular boundary integral operator
Nas admits the following explicit and closed-form variational expression:

(10)
〈
−Nasµ , µt

〉
D =

〈
Ss
−−→
curlDµ,

−−→
curlDµt

〉
D

+
〈
Sas

(
1
w

∂µ

∂φx

)
,

1
w

∂µt

∂φy

〉
D
.

Similarly, the bilinear form induced by the hypersingular boundary integral oper-
ator Ns admits the following explicit closed-form variational expression:

(11)
〈
−Nsg , gt

〉
D =

〈
Sas
−−→
curlDg,

−−→
curlDgt

〉
D

+
〈
Ss
(

1
w

∂g

∂φx

)
,

1
w

∂gt

∂φy

〉
D
.
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Proof. Let us prove identity (10); identity (11) can be deduced analogously. The
bilinear form induced by Nas is written as〈

−Nasµ , µt
〉

D =
∫

D

∫
D

∞∑
l=0

l∑
m=−l
l+m odd

ηl
yml (x)
w(x)

yml (y)
w(y)

µ(x)µt(y)dD(x)dD(y).

Let us define T : S→ D as the vertical projection of points from the sphere onto the
disk, and the following odd functions are defined for points x,y over S:

µ̃(x) =
{
µ(Tx) if x ∈ S+,
−µ(Tx) if x ∈ S−, and µ̃t(y) =

{
µt(Ty) if y ∈ S+,
−µt(Ty) if y ∈ S−.

Defined like this, we identify Y ml (x)µ̃(x) and Y ml (y)µ̃t(y) as even functions for l+m
odd, and as odd functions for l +m even. Thus, we can rewrite the bilinear form as

〈
−Nasµ , µt

〉
D =

1
2

∫
S

∫
S

∞∑
l=0

l∑
m=−l

ηl
2
Y ml (x)Y ml (y)µ̃(x)µ̃t(y)dS(x)dS(y)

=
1
2

∫
S

∫
S

∂2G

∂nx∂ny

(x,y)µ̃(x)µ̃t(y)dS(x)dS(y) [14, equation 3.2.31]

=
1
2

∫
S

∫
S
G(x,y)

(−−→
curlSµ̃(x),

−−→
curlSµ̃t(y)

)
dS(x)dS(y) [14, theorem 3.3.2].

Developing the inner product, we can rewrite again the previous expression as

〈−Nasµ , µt〉D

=
1
2

∫
S

∫
S
G(x,y)

[
cos (φx − φy)

(
∂µ̃(x)
∂θx

∂µ̃t(y)
∂θy

+
cos θx cos θy
sin θx sin θy

∂µ̃(x)
∂φx

∂µ̃t(y)
∂φy

)

+ sin (φx−φy)

(
cos θy
sin θy

∂µ̃(x)
∂θx

∂µ̃t(y)
∂φy

− cos θx
sin θx

∂µ̃(x)
∂φx

∂µ̃t(y)
∂θy

)]
cos θxcos θydS(x)dS(y)

+
1
2

∫
S

∫
S
G(x,y)

∂µ̃(x)
∂φx

∂µ̃t(y)
∂φy

dS(x)dS(y).

(12)

Let us focus on the second integral. The integral operator linked to the Laplace
Green’s function can be rewritten using series expansions as [14, equation 3.2.30]

1
2

∫
S

∫
S
G(x,y)

∂µ̃(x)
∂φx

∂µ̃t(y)
∂φy

dS(x)dS(y)

=
1
2

∫
S

∫
S

∞∑
l=0

l∑
m=−l

ζl
2
Y ml (x)Y ml (y)

∂µ̃(x)
∂φx

∂µ̃t(y)
∂φy

dS(x)dS(y).

Since µ̃ and µ̃t are odd functions we can write

1
2

∫
S

∫
S
G(x,y)

∂µ̃(x)
∂φx

∂µ̃t(y)
∂φy

dS(x)dS(y)

=
1
2

∫
S

∫
S

∞∑
l=0

l∑
m=−l
l+m odd

ζl
2
Y ml (x)Y ml (y)

∂µ̃(x)
∂φx

∂µ̃t(y)
∂φy

dS(x)dS(y)
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=
∫

S+

∫
S+

∞∑
l=0

l∑
m=−l
l+m odd

ζlY ml (x)Y ml (y)
∂µ̃(x)
∂φx

∂µ̃t(y)
∂φy

dS+(x)dS+(y)

=
∫

D

∫
D

∞∑
l=0

l∑
m=−l
l+m odd

ζl
yml (x)
w(x)

yml (y)
w(y)

∂µ(x)
∂φx

∂µt(y)
∂φy

dD(x)dD(y)

=
〈
Sas

(
1
w

∂µ

∂φx

)
,

1
w

∂µt

∂φy

〉
D
,

thus providing the desired result for the second integration in (12).
Let us now address the first integral. Let us first note that the following functions

are even with respect to the plane x3 = 0:

∂µ̃

∂θx
(x),

∂µ̃t

∂θy
(y),

cos θx
sin θx

∂µ̃

∂φx
(x), and

cos θy
sin θy

∂µ̃t

∂φy
(y);

thus we can rewrite the second integral in (12), eliminating the terms for l +m odd,
as

1
2

∫
S

∫
S

∞∑
l=0

l∑
m=−l

l+m even

ζl

2
Y m

l (x)Y m
l (y)

[
cos (φx−φy)

(
∂µ̃(x)
∂θx

∂µ̃t(y)
∂θy

+
cos θx cos θy
sin θx sin θy

∂µ̃(x)
∂φx

∂µ̃t(y)
∂φy

)

+sin (φx − φy)
(

cos θy
sin θy

∂µ̃(x)
∂θx

∂µ̃t(y)
∂φy

− cos θx
sin θx

∂µ̃(x)
∂φx

∂µ̃t(y)
∂θy

)]
cos θx cos θydS(x)dS(y).

Using the same procedure as before for writing sphere integrals of even functions as
integrals on S+ and on D with a change of variables we find the desired expression
for the first integral identifying(−−→

curlDµ̃(x),
−−→
curlDµ̃t(y)

)
= cos (φx − φy)

(
∂µ̃(x)
∂ρx

∂µ̃t(y)
∂ρy

+
1

ρxρy

∂µ̃(x)
∂φx

∂µ̃t(y)
∂φy

)

+ sin (φx − φy)

(
∂µ̃(x)
∂ρx

1
ρy

∂µ̃t(y)
∂φy

− 1
ρx

∂µ̃(x)
∂φx

∂µ̃t(y)
∂ρy

)
.

This proves (10) from the theorem. Equation (11) regarding Ns can be obtained
with the same procedure using complementary parity and symmetry.

Definition 3.16 (associated norms). It is convenient to use the developed varia-
tional forms to define norms to test the implementation in numerical experiments. Let
us define the following norms using the variational forms associated with the boundary
integral operators:

‖λ‖Ss
=
√
〈Ssλ , λ〉D, ‖ϕ‖Sas

=
√
〈Sasϕ , ϕ〉D,

‖g‖Ns
=
√
〈−Nsg , g〉D, ‖µ‖Nas

=
√
−〈Nasµ , µ〉D .

4. Numerical experiments. In this section we test the preconditioning capa-
bilities of the proposed integral operators. We do so by first developing a domain
discretization and boundary element spaces that satisfy the condition of having the
same dimensions, as required by Theorem 2.1. We propose numerical methods to
compute the associated Galerkin matrices and we test them through benchmarks us-
ing known solutions to the associated boundary integral equations. Finally, we test
the preconditioning capabilities of the Galerkin matrices associated with the proposed
boundary integral operators and an extension to screens other than the disk in R3.
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4.1. Domain discretization. Let us consider a triangular mesh Th of D, made
of NT closed triangles (with Ki its ith triangle), NE edges, and NV vertices (with
ri its ith vertex), of which N0

V are interior. The new domain of integration Dh, an
approximation of D, is then defined as Dh = ∪NT

m=1Km. We ask the mesh to comply
with standard assumptions of conformity. Mesh Th is used to define the basis functions
of finite-dimensional subspaces of H1/2(Dh) and H̃1/2(Dh). We need to consider dual
meshes to define the basis functions of the finite-dimensional subspaces of H−1/2(Dh)
and H̃−1/2(Dh). These subspaces need different meshes in order to comply with
one of the requisites demanded by Theorem 2.1, that is, that the finite-dimensional
spaces used have the same number of dimensions. This is made clear during their
construction and explained in following remarks.

Two dual meshes are constructed from Th. The first dual mesh T̃h is constructed
similarly as done in [18, section 2.2]: we consider the six subtriangles resulting from
dividing each triangle using its medians (barycentric refinement). We consider the
set of polygonal elements {Li}NV

i=0, associated with the vertices of the mesh such that
polygonal element Li associated with ri is the collection of subtriangles that have
vertex i of the mesh as one of their own vertices. We consider a second dual mesh in
order to develop appropriate elements for a subspace of H−1/2(D), dual to H̃1/2(D) of
functions zero on the border, and to comply with the requirement that finite subspaces
have the same dimensions. The second dual mesh T̃ 0

h uses a different subdivision of the
triangles on the border of Dh: the ones with two vertices over ∂Dh are not subdivided
and are considered proper subtriangles, while the ones with one vertex over ∂Dh are
divided into two subtriangles separated by the median associated with the vertex on
the border ∂Dh. The dual mesh T̃ 0

h then considers the set polygonal elements {Mi}N
0
V

i=0,
associated with the internal vertices of the mesh such that element Mi associated with
the internal vertex ri is the collection of subtriangles (now produced differently) that
have the internal vertex i of the mesh as one of their own vertices. Figure 1 shows
specimens of the three meshes for Dh for a fixed h. Figure 2 illustrates the mesh
construction process showing triangle subdivision at edge ∂Dh.

In the presented new boundary integral operators related to the Laplace equation
on the disk, the kernels involve projections of points from disk D onto the upper half-
sphere S+ and onto the lower half-sphere S−. When performing numerical integrations
over Dh, advantage can be taken performing it instead over projected discretized
domains S+

h and S−h , which can be constructed from Dh and vice versa using the
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Fig. 1. An example of a triangular mesh partition Th of Dh for a given mean edge size h

exhibiting its triangles {Km}NT
m=1 (left), with the resulting dual meshes T̃h, exhibiting its polygonal

components {Li}NV
i=1 (center), and T̃ 0

h exhibiting its polygonal components {Mi}
N0

V
i=1 (right).
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Fig. 2. Detail of the subdivision of the triangles of mesh Th near the border of ∂Dh, showing
the subdivision border triangles for the construction of T̃h (left) and T̃ 0

h (right).
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Fig. 3. Example of a discretized domain S+
h (left) and Dh (right), obtained as a vertical

projection onto the plane.

weight function w to compute the third component of the projected vertices. Figure 3
shows a discretized domain §+h and its projection Dh onto the plane. We use uniform
meshes of S+ to produce vertically projected meshes of Dh and S−h .

4.2. Boundary element spaces and computations. We employ the de-
scribed meshes to build zeroth and first order piecewise polynomial boundary element
spaces. We call Pn the space of bivariate polynomials of a degree less than or equal
to n, and we then proceed to define boundary element spaces.

Definition 4.1 (finite boundary element spaces). Let us define the following
finite boundary element spaces, piecewise polynomial on the polygonal shapes defined
for the primal mesh Th and the dual meshes T̃h and T̃ 0

h :

Uh =
{
uh ∈ C (Dh) : ∀Ki ∈ Th

(
uh|Ki

∈ P1)} , U0
h =

{
uh ∈ Uh : uh|∂Dh

= 0
}
,

Vh =
{
vh∈L2(Dh) :∀Li∈T̃h

(
vh|Li

∈P0)}, V 0
h =

{
vh∈L2 (Dh) :∀Mi∈T̃ 0

h

(
vh|Mi

∈P0)} .
Remark 4.2 (dimension matching). Constructed like this, the defined finite-

dimensional spaces are subspaces of the Sobolev trace spaces involved in the sym-
metric Dirichlet and antisymmetric Neumann problems, i.e.,
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Uh ⊂ H1/2 (Dh) , U0
h ⊂ H̃1/2 (Dh) , Vh ⊂ H̃−1/2 (Dh) , and V 0

h ⊂ H−1/2 (Dh) .

It is also noteworthy that dim(Uh) = dim(Vh) = NV , and dim(U0
h) = dim(V 0

h ) =
N0
V .

Definition 4.3 (basis functions). We implicitly denote the standard zeroth order,
piecewise constant, and first order pyramidal finite element basis functions (cf. [16,
section 4.1]) for the previously defined finite-dimensional spaces through the following
identities:

span
(
{χi}NV

i=1

)
=Uh, span

({
χ0
i

}N0
V

i=1

)
=U0

h, span
(
{κi}NV

i=1

)
=Vh, span

({
κ0
i

}N0
V

i=1

)
=V 0

h .

For piecewise affine functions χi or χ0
i we will denote their restriction to a triangle

Km as χKm
i (x) = ami x1 + bmi x2 + cmi . We write Km 3 ri to signify that ri is one of

the vertices of Km.

In what follows we describe how to compute numerically the bilinear forms from
Theorems 3.14 and 3.15 when evaluated at the basis functions of the different finite-
dimensional spaces from Definition 4.1.

To compute the boundary element integrals we consider the subtriangles that
compose triangles and polygonal elements defined for the primal mesh and for the
dual meshes. Let ki be a subtriangle belonging to a polygonal element from T̃h
or T̃ 0

h or to a triangle from Th. We denote by k+
i and k−i the triangles resulting

from projecting it onto the upper half-sphere S+ and onto the lower half-sphere S−,
respectively. The unit vector normal to a subtriangle ki is denoted by nki , and its
components are indicated with subindices.

Proposition 4.4 (computation of bilinear variational forms associated with Ss
and Sas). The values of the bilinear forms associated with the weakly singular integral
operators Ss and Sas for the piecewise constant basis functions are

〈Ssκi , κj〉Dh
=
∫
Li

∫
Lj

G
(
x+,y+) dLi(x)dLj(y)+

∫
Li

∫
Lj

G
(
x−,y+) dLi(x)dLj(y),

〈
Sasκ0

i , κ
0
j

〉
Dh

=
∫
Mi

∫
Mj

G
(
x+,y+)dMi(x)dMj(y)−

∫
Mi

∫
Mj

G
(
x−,y+)dMi(x)dMj(y).

Definition 4.5 (approximation of elementary integrals over polygonal shapes).
We use the following approximations, signaled by ≈, for the integration of the Laplace
Green’s function with the projected arguments:∫

Li

∫
Lj

G
(
x±,y+)dLi(x)dLj(y) ≈

∑
km⊂Li

∑
kn⊂Lj

∣∣∣nk±m
3 n

k+
n

3

∣∣∣ ∫
k±m

∫
k+

n

G (x,y)dk±m(x)dk+
n (y),

∫
Mi

∫
Mj

G
(
x±,y+)dMi(x)dMj(y) ≈

∑
km⊂Mi

∑
kn⊂Mj

∣∣∣nk±m
3 n

k+
n

3

∣∣∣ ∫
k±m

∫
k+

n

G (x,y)dk±m(x)dk+
n (y).

The values of the bilinear forms associated with the hypersingular integral oper-
ators Ns and Nas (Theorem 3.15) for the piecewise affine basis functions are

〈
−Nasχ0

i , χ
0
j

〉
D =

〈
Ss
−−→
curlDχ0

i ,
−−→
curlχ0

j

〉
D

+

〈
Sas

(
1
w

∂χ0
i

∂φx

)
,

1
w

∂χ0
j

∂φy

〉
D

,(13)

〈−Nsχi , χj〉D =
〈
Sas
−−→
curlDχi,

−−→
curlχj

〉
D

+
〈
Ss
(

1
w

∂χi
∂φx

)
,

1
w

∂χj
∂φy

〉
D
.(14)
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Definition 4.6 (approximation of elementary integrals for affine functions over
triangles). We approximate the integrals involved in (13) and (14). Let us first define
the function F for points x,y ∈ D, triangles m and n, and vertices i and j:

(15) F (x,y,m, n, i, j) =

[
x ·
(

bmi
−ami

)][
y ·
(

bnj
−anj

)]
w(x)w(y)

.

The integrals involved in (13) and (14) can be computed as〈
Ss/as

−−→
curlDχKm

i ,
−−→
curlχKn

j

〉
D

=
(
ami a

n
j + bmi b

n
j

) ∫
Km

∫
Kn

(
G(x+,y+)±G(x−,y+)

)
dKm(x)dKn(y),〈

Ss/as
(

1
w

∂χKm
i

∂φx

)
,

1
w

∂χKn
j

∂φy

〉
D

=
∫
Km

∫
Kn

(
G(x+,y+)±G(x−,y+)

)
F (x,y,m, n)dKm(x)dKn(y)

≈ F (rmc , r
n
c ,m, n, i, j)

∫
Km

∫
Kn

(
G(x+,y+)±G(x−,y+)

)
dKm(x)dKn(y),

where rmc and rnc are the centroids of triangles m and n. The integral of the Laplace
Green’s functions with the projected arguments can be computed as before as∫
Km

∫
Kn

G(x±,y+)dKm(x)dKn(y) ≈
∣∣∣nK±m3 n

K+
n

3

∣∣∣ ∫
K±m

∫
K+

n

G(x,y)dK±m(x)dK+
n (y).

Remark 4.7 (kernel integration for pairs of triangles in R3). After approximating
integration over the vertically projected triangles, elementary triangle integration,
i.e., the integration of the Laplace Green’s function G over any two triangles in R3, is
computed as described in [3, sections D.12.3 and D.12.4], [1]: an analytical integration
formula is used if the triangles intersect (if they share a vertex or an edge, or if they
are the same triangle), and a numerical quadrature formula is used if they do not
intersect.

Definition 4.8 (Galerkin matrices associated with the new operators). We de-
fine the Galerkin matrices associated with the bilinear forms described in this section.
These matrices are used in the resolution of boundary integral equations associated
with the proposed operators for testing purposes and later in preconditioning methods.
Let us define the following matrices:

Sh
s [i, j] = 〈Ssκi, κj〉Dh

, Sh
as[i, j] = 〈Sasκ0

i , κ
0
j 〉Dh

,

Nh
s [i, j] = 〈Nsχi, χj〉Dh

+ α〈χi, 1〉Dh
〈χj , 1〉Dh

, Nh
as[i, j] = 〈Nasχ0

i , χ
0
j 〉Dh

.

The variational form associated with Ns is augmented with a parameter α ∈ R+,
as shown in the expression of its Galerkin matrix, to eliminate the kernel space {y0

0}
(cf. Proposition 3.12).

Using Proposition 3.12, boundary integral equations with known exact solutions
can be considered for each one of the four boundary integral operators on the disk.
Approximations λh, µh, gh, and ϕh can be computed with a finite-dimensional varia-
tional formulation using the described boundary element computations. Table 1 shows
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Table 1
Four boundary integral equations associated with the four new boundary integral equations that

will be used to test described numerical implementation.

Integral

operator

Boundary

integral operator

Exact

solution

Numerical

solution

Numerical

error

Ss Ssλ = (1/3)y11(x) λ = y11(x)w−1(x) λh ES
s = ‖λ− λh‖Ss

Sas Sasϕ = (1/5)y12(x) ϕ = y12(x)w−1(x) ϕh ES
as = ‖ϕ− ϕh‖Sas

Ns Nsg = −(2/3)y11(x)w−1(x) g = y11(x) gh EN
s = ‖g − gh‖Ns

Nas Nasµ = −(6/5)y12(x)w−1(x) µ = y12(x) µh EN
as = ‖µ− µh‖Nas
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Fig. 4. Absolute numerical errors for the solutions of the boundary integral equations linked to
the operators Ss and Sas (left) and to the operators Ns and Nas (right).

four boundary integral equations, each associated with one of the new boundary inte-
gral operators on the disk, their known exact solutions, as given by Proposition 3.12,
the numerical approximations, and the numerical errors.

In what follows, the error convergence is shown for decreasing mean edge size of
the mesh. Figure 4 shows the convergence of the numerical error defined in Table 1
for the four boundary integral equations. The decreasing numerical error, as shown in
Figure 4, confirms the capacity of the proposed numerical schema and its implemen-
tation of solving the new boundary integral equations arising from the new operators
from Definition 3.11.

4.3. Preconditioning the single layer and the hypersingular boundary
integral operators on the disk. Once the numerical implementation has been
shown to be effective, we take interest in the preconditioning properties of the ma-
trices associated with the bilinear forms involved in the finite-dimensional variational
formulations. We define basis projection matrices taking the bilinear form d from
Theorem 2.1 to be the duality product 〈· , ·〉D.

Definition 4.9 (basis projection Galerkin matrices). Let us define the following
basis projection Galerkin matrices:

D1,h[i, j] = 〈χi, κj〉Dh
and D2,h[i, j] = 〈χ0

i , κ
0
j 〉Dh

.

We now follow Theorem 2.1 in building preconditioned Galerkin matrices associ-
ated with the four new boundary integral operators, using them pairwise as mutual
preconditioners:
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Fig. 5. Spectral condition number of the Sh
s matrix , the Nh

s matrix, and their performance as
mutual preconditioners (left). Spectral condition number of the Sh

as matrix, the Nh
as matrix, and

their performance as mutual preconditioners (right).

(16) D−1
1,hS

h
sD
−T
1,hNh

s and D−1
2,hS

h
asD

−T
2,hNh

as.

We examine the evolution of the spectral condition number of these matrices
for decreasing mean edge size of the mesh. Figure 5 shows the spectral condition
number of the previously defined matrices exhibiting their performance as mutual
preconditioners. It is remarkable that the new boundary integral operators perform
experimentally as asymptotically bounded mutual operator preconditioners, achieving
low spectral condition numbers.

It is remarkable that the pair of matrices associated with the so-called symmet-
ric operators and the pair of matrices associated with the so-called antisymmetric
operators act experimentally as optimal mutual preconditioners, providing bounded
condition numbers independently of the refinement of the mesh. This suggests that
the bilinear forms induced by the operators are continuous and coercive in spaces
linked by duality, as requested by Theorem 2.1 for optimality in preconditioning. It is
also remarkable that the asymptotically bounded conditioned number achieved is low,
as suggested by the Calderón-type identities provided. Finally, it is also remarkable
that the duality pairing of the basis functions from Uh and Vh, and the basis functions
from U0

h and V 0
h , appears to be stable in the sense defined by (3).

Having noted the mutual preconditioning capabilities of the new boundary in-
tegral operators on the disk, we interest ourselves in the possibility of using these
matrices as preconditioners for the Galerkin matrices arising from the variational for-
mulation of the boundary integral equations for operators S and N , linked with the
symmetric Dirichlet and antisymmetric Neumann problems on the disk.

Definition 4.10 (Galerkin matrices of the weakly singular and hypersingular
operators). We define the matrices associated with the bilinear form for the weakly
singular and hypersingular boundary integral operator:

(17) Sh[i, j] = 〈S κi, κj〉Dh
and Nh[i, j] = 〈N χ0

i , χ
0
j 〉Dh

+ β〈χ0
i , 1〉Dh

〈χ0
j , 1〉Dh

.

As before, a parameter β ∈ R+ is used to restrict the space involved in order to
account for the kernel space of the hypersingular boundary integral operator.
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Fig. 6. Spectral condition number of the Sh matrix and the performance of the P h
s matrix as

preconditioner (left). Spectral condition number of the Nh matrix and the performance of the P h
as

matrix as preconditioner (right).

Definition 4.11 (preconditionning matrices). We define preconditioning matri-
ces for the weakly singular and hypersingular operator matrices based on Ns and Sas,
respectively. Taking the expressions from Theorem 2.1,

(18) P h
s = D−1

1,hN
h
sD
−T
1,h and P h

as = D−1
2,hS

h
asD

−T
2,h .

We use P h
s to precondition Sh and P h

as to precondition Nh. Figure 6 shows
the spectral condition numbers of the Galerkin matrices associated with the weakly
singular and hypersingular boundary integral operators and the performance of the
defined preconditioners for a mesh refinement measured by diminishing mean edge
sizes.

In this case, the condition number is greatly decreased, specially for the Sh ma-
trix, although the preconditioning method is not asymptotically bounded, i.e., is not
optimal. This is the consequence of Sas and Ns not being exact inverses for N and
S, nor being inducers of coercive bilinear forms in the dual spaces of H̃1/2(D) and
H̃−1/2(D): H−1/2(D) and H1/2(D). The performance of the preconditioner linked to
Ns which is only moderate. This is due to the condition number of matrix Nh already
being improved because of the augmentation parameter β described in Definition 4.10.

4.4. Extension to other shapes. The preconditioning effect of matrices P h
s

and P h
as is achieved by selecting kernels Khs

s and Kws
as that induce integral oper-

ators that, while not providing exact inverses for S and N , have some desirable
features. Mainly, they behave similarly to what the inverses’ behavior was in the
two-dimensional case and in relation to the known behavior of the jump of traces,
as stated in Remark 3.1, related to w(ρ) and 1/w(ρ). Also, the weight function w
was intimately related to the relation between the sphere and the disk. This role
manifested in the fact that vertical projection of point x on the disk onto the sphere,
x±, were separated by the quantity w(x). In this section we use these elements to
extend the action of the defined preconditioners by preserving the role they had for
disk D.

Let us define the function

(19) wΓ(x) =
√

dist(x, ∂Γ) for x ∈ Γ.



ABOUT SOME BOUNDARY INTEGRAL OPERATORS ON THE DISK 1911

−1

−0.5

0

0.5

1 −1

−0.5

0

0.5

1
−1

−0.5

0

0.5

1

x 3

x
1

x
2

−1

−0.5

0

0.5

1 −1

−0.5

0

0.5

1

0

0.5

1

x
2

x
1

x 3
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h

(right) for the mesh set.
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h (right).

We replace in the previous procedure w with wΓ. This implies that the upper and
lower meshes, now Γ+

h and Γ−h , and the vertical projection of the triangles of Γh are
now to be governed by the point projection x± = (x1, x2,±wΓ(x)). This results in
new upper and lower meshes and triangle projections K± when used in the boundary
element computations. We also replace w with wΓ whenever present in the numerical
scheme, i.e., in (15).

To put this idea to the test, we consider two different screens: a square-shaped
and an L-shaped screen. Figures 7 and 8 show the discretized domain for the square-
shaped and the L-sphape screens, Γh, along with their corresponding projected upper
mesh Γ+

h . Figures 9 and 10 show the evolution of the spectral condition number for
the case of the square-shaped and L-shaped screens, respectively, using the proposed
method, i.e., replacing w with wΓ and thus also upper and lower meshes (and thus
triangle projections) and using preconditioner matrices from Definition 4.11.

The condition number has greatly improved, although it presents anomalies in its
evolution as the mean edge size of the mesh diminishes. This is due to the fact that
the broken angles on the edge of the screen introduce other singularities on the jump
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Fig. 9. Spectral condition number of the Sh matrix and the performance of the P h
s matrix as a

preconditioner for the square-shaped screen (left). Spectral condition number of the Nh matrix and
the performance of the P h

as matrix as a preconditioner for the square-shaped screen case (right).
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Fig. 10. Spectral condition number of the Sh matrix and the performance of the P h
s matrix

as a preconditioner for the L-shaped screen (left). Spectral condition number of the Nh matrix and
the performance of the P h

as matrix as a preconditioner for the L-shaped screen (right).

of the traces, not described so far and falling outside the scope of this article. These
anomalies are sensitive to the values α and β chosen to eliminate kernel spaces. The
preconditioning effect for matrix Nh was again moderate, especially for the case of
the square-shaped screen.

5. Conclusions. We have proposed new integral kernels, taking as hints the
forms of the kernels of the exact inverses for S and N when the screen was the seg-
ment in R2 and the known behavior of the jump of the Dirichlet and Neumann traces
for the Laplace problem in three dimensions. These new integral kernels preserve the
radial behavior (on the ρ direction), in comparison with the bidimensional case, using
a weight function w in the case of the disk screen. These kernels give rise to integral
operators for which the mapping properties and Calderón-type identities were found.
The particular choice of the coefficients of the series of the integral kernels also allowed
for explicit and closed-form variational expressions that were suitable for use in bound-
ary element methods. Numerical schemes were proposed for the boundary element
computation of the associated bilinear forms. These schemes were tested ensuring
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their correct use approximations and their implementation. The Galerkin matrices
arising from the proposed boundary integral operators were shown to be optimal
mutual preconditioners, suggesting that the selected basis for the finite-dimensional
variational formulations had stable pairings and that the new boundary integral op-
erators induce coercive bilinear forms in some yet undefined Hilbert spaces. These
Galerkin matrices associated with the new operators were then used to precondition
the ones arising from the bilinear forms induced by S and N , which are needed for
the resolution of the Dirichlet and Neumann problem. This method showed a signifi-
cant decrease of the condition number, although suboptimal, suggesting that the new
integral operators do not furnish coercive bilinear forms in the Sobolev spaces of the
given Dirichlet and Neumann data. The preconditioning effect was better observed
for the Galerkin matrix associated with S, as the one associated with N had much
better condition numbers. The technique was extended to other shapes, changing
the weight function w to reflect the behavior of the jump of the traces locally near
the edges of the screens. This method proved to greatly reduce the condition num-
ber in some cases, opening the way to precondition other complex-shaped screens.
The effect of the proposed management of the condition number on the number of
iterations used to solve boundary integral equations with boundary element methods
will depend on the iterative method chosen, although it is ensured to improve with
decreased condition numbers.
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pp. 77–81.

[2] G. H. Golub and C. F. V. Loan, Matrix Computations, 4th ed., Johns Hopkins Stud. Math.
Sci., Johns Hopkins University Press, 2013.

[3] R. Hein, Green’s Functions and Integral Equations for the Laplace and Helmholtz Operators
in Impedance Half-Spaces, Ph.D. thesis, École Polytechnique, 2010.
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