
Centre de Mathématiques Appliqués
URM 7641 École Polytechnique CNRS
Route de Saclay, 91128 Cedex, France

Partial Differential Equations and Numerical Analysis

Centre de Mathématiques Appliquées - École Polytechnique

On The Hierarchical Matrices, Cross-Approximations,

And Other Graph-Based Fast Methods

For Linear Algorithmic and Memory Complexity

For The Boundary Elements Method

Author: Pedro Ramaciotti 1

October 2013

1ramaciotti@cmap.polytechnique.fr

Contents

1 Introduction 1

2 Computational Complexity of the Boundary Element Method: An Example 2

2.1 Introduction . 2

2.2 Integral Representation and Integral Equation . 3

2.3 Variational Formulation . 4

2.4 Galerkin Discretization and Computational Cost 5

3 Hierarchical Matrices, Cross-Approximation And Other Fast Methods for
the BIE 8

3.1 Introduction . 8

3.2 Low-Rank Matrices and Their Relation with the Kernel of an Integral Operator 8

3.2.1 Matrices Arising from Degenerated Kernels 8

3.2.2 Low-Rank Matrices and Their Representation 9

3.2.3 Basic Operations Involving Low-Rank Matrices 10

3.2.4 Connection with the Classical Fast Methods 11

3.3 The Hierarchical Matrices Methods . 14

3.3.1 Index Sets, Clusters and Cluster Trees . 15

3.3.2 Block-Clusters . 18

3.3.3 Geometrical Admissibility of Block-Clusters 18

3.3.4 Block-Cluster Trees and Admissible Partitions of the System Matrix . . 19

3.3.5 Hierarchical Matrices . 21

3.4 Low-Rank Approximation of Matrices Arising in the Discretization of Integral
Operators . 23

3.4.1 The Existence of Low-Rank Approximations 23

3.4.2 The Relation Between the Kernel, the Existence of Degenerate Approx-
imants and Its Quality . 24

3.4.3 Cross-Aproximation Methods . 27

4 Example Computations 31

4.1 An Elemental Case . 31

4.2 Cross-Approximation for the BEM for the Electric Field Integral Equation . . . 35

4.2.1 BEM for the Perfect Electric Conductor 35

4.2.2 Cross-Approximation for Separated Objects 38

5 Historical Review 40

5.1 The Acceleration of Pairwise Interactions and the Fast Multipole Method 40

5.2 The Panel Clustering Method and the Development of the Hierarchical Structures 40

5.3 The Hierarchical Matrix . 41

5.4 Cross-Approximation Methods . 41

1 Introduction

The goal of this work is to give a comprehensive, but also brief and straightforward
introduction to the so-called fast methods for the resolution of integral equations arising in
the solution partial differential equations from the perspective of the hierarchical matrix and
the cross-approximation methods. It aims to propose a sequential understanding of the main
ideas that have been developed in the field since the 1980s spread in several sub-branches of
research.

The integral equation methods are a classical approach for the solution of partial differential
equations related to wave propagation or potential phenomena in bounded and unbounded
domains. They allow for the formulation of equivalent integral equations in the boundary of
the domains instead of the more classical modeling through partial differential equations in the
whole domains. A variational formulation and a Galerkin discretization based on a geometrical
discretization of the boundary of the domains lead to the Boundary Elements Method (BEM).
The BEM aims to solve the discretized variational formulation on the interphases of the
domains rather than in their interior, as the Finite Elements Method (FEM) does. The main
disadvantage is that, while the FEM leads to a sparse system matrix, the BEM leads to a
full system matrix due to the non-local nature of the kernel of the integral equation arising
from the integral representation. This constitutes a major difficulty in the implementation of
the integral equation approach because the storage of the system matrix and the amount of
operations required to solve the associated linear system (using iterative solvers with proper
preconditioning) scale asymptotically as O(n2) instead of O(n), as it is achieved with the
FEM. This disadvantage leads rapidly to the impracticality of the integral equation approach
as the size of the problem grows if no additional measures are taken. To take advantage of
the benefits of the BEM over the FEM for certain applications (specially related to unbounded
domains) the so-called fast methods must be implemented. These fast methods have been in
constant development since their first introduction in the 1980s and provide means to deal
with (store, operate, compute) system matrices with linear or linear-logarithmic complexity
and algorithms to solve the related systems also with linear or linear-logarithmic arithmetic
complexity. This work aims to introduce the development of the main ideas behind the fast
methods for the BEM with a focus on the most general one, the hierarchical matrix method,
articulating recent developments in many sub-fields in a single exposition. A special focus will
also be kept in the Cross-Approximation (CA) methods and their kernel-independency over
more classical kernel-dependent approximations.

This work is structured as follows:

• A contextual setting regarding the BEM is given showing the complexity problems
inherent to the method and the need to study and develop fast methods.

• A development of the main ideas behind the fast methods, with a focus on hierarchical
matrices and CA methods, are exposed; the main theorems and complexity estimates are
provided.

• Some example computations are studied and exhibited, illustrating the concepts treated
in this report.

• Finally, with the main ideas and applications in mind, a revision of the historical devel-
opment of the methods is given.

1

2 Computational Complexity of the Boundary Element Method:
An Example

2.1 Introduction

This section illustrates the main advantage of the BEM in the approximation of solutions
to PDEs but also its main disadvantage as a motivation for the development and study of the
so-called fast methods for the solution of the associated discrete Boundary Integral Equations
(BIE). To this end a wave propagation problem in an unbounded domain is modeled exploiting
the advantages of the integral equation approach. The BEM is used and the computational
complexity is analyzed.

In the following, a sound propagation model is developed for an open space where a rigid
obstacle has been placed.

The iso-entropic, time-harmonic variation of pressure p in a perfect fluid at rest is modeled
by the Helmholtz equation:

− (∆ + k2
)p = 0, (1)

where k = ω/c is the wavenumber for a pulsation ω and the sound speed c.

Let us consider the situation where a rigid obstacle Ωint ⊂ R3 of boundary Γ is surrounded by
an unbounded and perfect fluid at rest Ωext ⊂ R3 such that Ωint∩Ωext = Γ and Ωint ∪Ωext = R3.

Let as consider an incident pressure wave pinc complying with the Helmholtz equation:

−(∆ + k2)pinc = 0 in Ωext. (2)

If we decompose the total pressure wave in an incident wave and a scattered wave p =

pinc + pscat, and using (2), equation (1) imposes

−(∆ + k2
)pscat = 0 in Ωext.

Let n̂ be the unit normal to Γ pointing towards Ωext, and let u be the displacement vector
of the points of the obstacle immersed in the fluid of density ρext. Then, on the boundary Γ,
the following relation for the pressure p and the point displacement u holds [23]:

ρext ω
2u ⋅ n̂ =

∂p

∂n̂
=
∂pinc
∂n̂

+
∂pscat
∂n̂

. (3)

For a rigid obstacle the displacement of its point is null, i.e., u = 0, and equation (3) can be
written as

∂pscat
∂n̂

= −
∂pinc
∂n̂

. (4)

Finally, the partial differential equation for the scattered part pscat of the wave of an iso-
entropic variation of pressure p produced by a wave pinc incident on a rigid body of boundary
Γ surrounded by a perfect fluid is

⎧⎪⎪⎪
⎨
⎪⎪⎪⎩

−(∆ + k2)pscat = 0 in Ωext,

∂pscat
∂n̂ = −

∂pinc
∂n̂ on Γ.

(5)

2

2.2 Integral Representation and Integral Equation

Definition 1 (Sommerfeld Radiation Condition) A solution p to the Helmholtz equation
is said to satisfy the Sommerfeld radiation condition (SRC) if it satisfies

lim
∥x∥2→∞

∥x∥2 (
∂

∂∥x∥2
p(x) − ikp(x)) = 0

Lemma 1 (Green’s Function for the Helmholtz Equation) The Green’s functions for
the Helmholtz equation, i.e., the only function G(x, y) that satisfies

⎧⎪⎪⎪
⎨
⎪⎪⎪⎩

−(∆x + k
2)G(x, y) = δ(x − y) D′(R3)

G(⋅, y) satisfies the SRC

is G(x, y) =
eik∥x−y∥2

4π∥x − y∥2
.

Demonstration Page 12, [26]. ∎

Theorem 1 (Helmholtz Integral Representation Theorem) Let q be a function such
that

∆q + k2q = 0 in Ωint,

∆q + k2q = 0 in Ωext,

and such that it satisfies the Sommerfeld radiation condition. Let us define the jump functions
over Γ as

[q] = q∣int − q∣ext and [
∂q

∂n̂
] =

∂q

∂n̂
∣
int

−
∂q

∂n̂
∣
ext
.

Then, q∣int, qext,
∂q
∂n̂ ∣int and ∂q

∂n̂ ∣ext ∈ C
0(Γ), and for x ∉ Γ, q can be represented as

q(x) = ∫
Γ

G(x, y) [
∂q

∂n̂
(y)]dΓ(y) − ∫

Γ

∂

∂n̂y
(G(x, y)) [q(y)]dΓ(y).

Demonstration Theorem 3.1.1, page 110 [26]. ∎

Theorem 2 (Traces’ Theorem) Let µ and λ be continuous over Γ and let q be

q(x) = ∫
Γ

G(x, y)λ(y)dΓ(y) − ∫
Γ

∂

∂n̂y
(G(x, y))µ(y)dΓ(y).

Then, the traces of q comply with

(
q∣int
∂q
∂n̂ ∣int

) = (
I/2 −D S
−N I/2 +D∗)(

µ
λ

) and (
q∣ext
∂q
∂n̂ ∣ext

) = (
−I/2 −D S
−N −I/2 +D∗)(

µ
λ

) ,

where I is the identity operator and D, S, N and D∗ are integral operators defined as
follows:

Dµ(x) = ∫
Γ

∂

∂n̂y
G(x, y)µ(y)dΓ(y),

Sλ(x) = ∫
Γ

G(x, y)λ(y)dΓ(y),

3

D∗λ(x) = ∫
Γ

∂

∂n̂x
G(x, y)λ(y)dΓ(y),

Nµ(x) = ∫
Γ

∂2

∂n̂y∂n̂x
G(x, y)µ(y)dΓ(y).

Demonstration Theorem 3.1.2, page 113 [26]. ∎

Using the two previous theorems the scattering problem (5) can be reformulated as follows.
Let p̃scat be defined in Ωint ∪Ωext by:

⎧⎪⎪⎪
⎨
⎪⎪⎪⎩

−(∆ + k2)p̃scat = 0 in Ωext

∂p̃scat
∂n̂ ∣ext = −

∂pinc
∂n̂ on Γ.

⎧⎪⎪⎪
⎨
⎪⎪⎪⎩

−(∆ + k2)p̃scat = 0 in Ωint

∂p̃scat
∂n̂ ∣int = −

∂pinc
∂n̂ on Γ.

Defined this way, it will result that p̃scat = pscat in Ωext. Also, for p̃scat, the jump relations
are

λ(x) = [
∂p̃scat
∂n̂

] (x) = 0 and µ(x) = [p̃scat] (x) for x ∈ Γ.

If the function µ was known, then, by virtue of Theorem 1, the solution to the scattering
problem could be computed as

pscat(x) = p̃scat(x) = −∮
Γ

∂G(x, y)

∂n̂y
µ(y)dΓ(y) for x ∈ Ωext.

Function µ can in fact be calculated, since by virtue of Theorem 2 it satisfies the following
integral equation:

∂p̃scat
∂n̂

(x)∣
ext

= −
∂pinc
∂n̂

(x) = −Nµ(x) = −∮
Γ

∂2G(x, y)

∂n̂x∂n̂y
µ(y)dΓ(y) for x ∈ Γ. (6)

2.3 Variational Formulation

A variational formulation for the integral equation (6) is provided to look for a solution.
As a jump of the pressure (assumed to be for example in H1(Ωext ∪Ωint)), µ can be proven to
be in H1/2(Γ) and the traces of the derivatives of the pressure in H−1/2(Γ). The operator N
can be proven to be continuous from H1/2(Γ) to H−1/2(Γ). The following theorem provides a
variational formulation for the integral equation.

Theorem 3 (Variational Formulation for the N Integral Operator) When −k2 is not
an eigenvalue of the associated interior Neumann problem for the Laplace equation, the integral
operator N defined in Theorem 2 is continuous from H1/2(Γ) onto H−1/2(Γ) and the integral
equation (6) admits the following variational formulation:

4

Figure 1: Triangular discretization approximation Γh the unit sphere.

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪
⎨
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

Find µ ∈H1/2(Γ) such that ∀µt ∈H1/2(Γ) ∶

∫
Γ×Γ

G(x, y) (
ÐÐ→
curlΓµ(y) ⋅

ÐÐ→
curlΓµ

t(x))dΓ(x)dΓ(y)

−k2
∫

Γ×Γ

G(x, y)µ(y)µt(x) n̂x ⋅ n̂y dΓ(x)dΓ(y)

= − ∫
Γ

∂pinc
∂n̂x

(x)µt(x)dΓ(x).

(7)

Demonstration Theorem 3.4.2, page 143 [26]. ∎

2.4 Galerkin Discretization and Computational Cost

If the surface Γ is assumed to be piecewise polygonal and it is approximated by a triangular
discretization Γh where h indexes a discretization by the longest edge, the spaces H1/2(Γ) and
H−1/2(Γ) can be approximated by finite-dimensional sub-spaces spanned by basis functions
such as, e.g., Lagrange finite element functions P1, P2, etc. Non-constant finite elements (P1
or higher order) are needed so that their derivatives do not vanish in the variational formulation
(7). Figure 1 exemplifies the approximation of the unit sphere by a triangular discretization
Γh.

Using a finite-dimensional sub-space Hh of dimension N , spanned by a set of basis functions
{ϕ1, ϕ2, ..., ϕN}, the variational formulation can be put in a linear system as

µ(x) =
N

∑
j=1

µjϕj(x) for x ∈ Γh,

I = (µ1, µ2, ..., µN)
T , and

5

ZI = V,

where,

Zij = ∫
Γh×Γh

G(x, y) (
ÐÐ→
curlΓhϕj(y) ⋅

ÐÐ→
curlΓhϕi(x))dΓh(x)dΓh(y)

−k2
∫

Γh×Γh

G(x, y)ϕj(y)ϕi(x) n̂x ⋅ n̂y dΓh(x)dΓh(y),

and,

Vi = −∫
Γh

∂pinc
∂n̂x

(x)ϕi(x)dΓh(x).

The matrix Z is complex and symmetrical, and as such the storage required is of N(N+1)/2
complex numbers, thus, the storage complexity is of order O(N2). If the system is to be
solved by means of an iterative solver each iteration will require a matrix-vector multiplication,
which will require N2 sums and multiplications of complex floating point numbers, thus the
computational complexity of the solver will be of oder O(N2Niterations).

In the case of wave propagation problems at least 10 triangles per wavelength are required
to correctly sample the wave-like phenomena (5 triangles per wavelength is accepted in some
far-fields applications). For a propagation domain Ωext with a given propagation speed c and
a time-harmonic incident wave of frequency f the wavelength will be c/f and length of the
edges in mesh will grow as O(1/f), the area of the triangles will grow as O(1/f2) and the
number of triangles as O(f2). The number of degrees of freedom N can be number of triangle
edges, triangle vertices, middle points, or other similar. The quantity of these geometrical
elements grows with the same order than the number triangle faces as given by the Euler
characteristic for the topology of the surface Γ, which implies that the storage complexity and
the computational complexity has an asymptotic behavior of O(f4). This renders the integral
equation technique impractical for many applications if no additional measures are taken.

As an example, Figure 2 shows the required computer memory and the required number of
complex floating point operations to perform a matrix-vector multiplication for the case of the
computation of a sound wave of different frequencies scattered by a rigid unit sphere in open
air, where the speed is around 343 m/s. The complex number representation is assumed to
be standard double (IEEE-754), meaning that each one requires 16 bytes of storage. It can be
seen in the figure that the slope of the complexities’ curves is indeed 4 decades of complexity
(both in storage and computation of a matrix-vector multiplication) per decade of frequency.

6

102 103 104
10−4

10−3

10−2

10−1

100

101

102

103

Frequency (Hz)

M
em

or
y

Re
qu

ire
d

to
 S

to
re

 M
at

rix
 (G

By
te

s)

P1 Lagrange FE
P2 Lagrange FE

102 103 104
104

105

106

107

108

109

1010

1011

Frequency (Hz)

Pa
irs

 (+
,x

) o
f C

om
pl

ex
 F

LO
P

Re
qu

ire
d

fo
r M

at
rix
−V

ec
to

r P
ro

du
ct

P1 Lagrange FE
P2 Lagrange FE

Figure 2: Memory required to store the interaction matrix for a rigid unit sphere in open air
(left) and the number of complex floating point operations required to perform a matrix-
vector multiplication (right), both respecting the criterion of 10 triangles per wavelength.

7

3 Hierarchical Matrices, Cross-Approximation And Other Fast
Methods for the BIE

3.1 Introduction

In this chapter the main elements of the hierarchical method and the cross-approximation
methods are sequentially constructed developing the complexity estimates required to store an
approximation of the system matrix and to perform matrix-vector multiplications. A short
link with other classical fast methods is discussed.

In a first part the core building elements of the fast methods, the degenerate approximation
of an integral kernel, are shown and discussed. Their consequences are explored in terms of
data-sparse representations and their advantages in storage and computation. In a second part
the notational framework required to treat the structure of the system matrix in relation to
the geometry of the problem is treated showing how it can be decomposed. Finally, in a third
part of the chapter, the exploitation of the degenerate approximations of the kernels using the
structure in the second part is treated together with error estimates and the algorithms to
compute them.

3.2 Low-Rank Matrices and Their Relation with the Kernel of an Integral
Operator

The main idea behind the fast methods for the BEM is the postulate that sub-matrices
of the system matrix may be replaced by suitable approximations capable of reducing the
storage complexity and the arithmetic complexity involved in relevant matrix operations.
These approximations rely on the nature of the underlying problem, more precisely, on the
associated kernels of the integral operators and their approximations. Their advantage arises
from the consequences of the way the matrices they produce can be represented (and thus
operated and stored, if needed). In this section, an introduction to the relation between low-
rank representations and approximate integral operators is given, followed by a description
and a discussion on the associated low-rank sub-matrices and the consequences in memory
storage and computational complexity. A link will also be provided to the exploitation of these
consequences through classical sub-techniques of these fast methods: the fast multipole method
(FMM), the panel clustering method and the cross-approximation methods.

3.2.1 Matrices Arising from Degenerated Kernels

Using the integral equation approach a partial differential equation problem can be often
formulated as an integral equation, e.g., for the single layer potential, in the form of

f(x) = ∫
Γ

G(x, y)u(y)dΓ(y),

which in turn can be formulated as a variational problem and then discretized via a Galerkin
discretization, giving rise to equations of the type

∫

Γ

f(x)ϕi(x)dΓ(x) = ∫
Γ×Γ

G(x, y)uh(y)ϕi(x)dΓ(y)dΓ(x),

where

uh(x) =
Nh

∑
j=1

λjϕj(x),

8

and {ϕi}
Nh
i=1 is the set of basis functions that span de finite-dimensional sub-space of the

space where the variational problem is given.

These equations can be put in a system of linear equations, i.e.,

Nh

∑
j=1

λj
⎛
⎜
⎝
∫

Γ×Γ

G(x, y)ϕi(x)ϕj(y)dΓ(y)dΓ(x)
⎞
⎟
⎠
= ∫

Γ

f(x)ϕi(x)dΓ(x),

which can be represented by a matrix equation for the system matrix Z:

ZI = V,

Zij = ∫
Γ×Γ

G(x, y)ϕi(x)ϕj(y)dΓ(y)dΓ(x),

Vi = ∫
Γ

f(x)ϕi(x)dΓ(x).

For other integral operators the procedure is similar.

The main idea behind the fast methods for the BEM is that, at least for some couples of
regions Γx,Γy ⊂ Γ (chosen using a specific criterion that will be discussed), the kernel of the
integral equation can be proven to be formulated as a series of terms formed by factors that
account separately for the effect of the position x and y:

G(x, y) =
∞
∑
l=0

gl(x)hl(y).

If the series can be approximated by a suitable truncation up to the first k terms,

G̃(x, y) =
k−1

∑
l=0

gl(x)hl(y),

then the sub-matrix Z̃ ∈ Cm×n of the system matrix corresponding to the integration over
Γx × Γy could be approximated by a matrix whose elements are

Z̃ij =
k−1

∑
l=0

⎛
⎜
⎝
∫

Γx

gl(x)ϕi(x)dΓ(x)
⎞
⎟
⎠

⎛
⎜
⎝
∫

Γy

hl(y)ϕj(y)dΓ(y)
⎞
⎟
⎠
.

This means that this portion of the system matrix could be written as the product of two
matrices of lesser rank,

Z̃ = A ⋅BT ,

the matrices A ∈ Cm×k and B ∈ Cn×k having elements

Ail = ∫
Γx

gl(x)ϕi(x)dΓ(x) and Bjl = ∫
Γy

hl(y)ϕj(y)dΓ(y).

3.2.2 Low-Rank Matrices and Their Representation

The central element of the fast methods is the detection and approximation of the sub-
matrices of the system matrix susceptible of being expressed in a more suitable way in the
sense of storage and computational complexity. This chapter provides a formal framework to
treat such matrices with the aim of exploiting these advantages.

9

Definition 2 (k-Rank Matrices) We denote the set of m × n matrices having at most k
linearly independent rows or columns by

Cm×nk = {A ∈ Cm×n ∶ rank(A) ≤ k}.

Theorem 4 (k-Rank Matrix Outer-Product Representation) A matrix A ∈ Cm×n be-
longs to Cm×nk if and only if there exist matrices U ∈ Cm×k and V ∈ Cn×k such that

A = UV H ,

where V H denotes the conjugate transpose of V .

Demonstration Let us consider a matrix with rank less or equal than k, A ∈ Cm×nk , i.e. the
dimension of its column space is at most equal to k. Equivalently, the rows a1, a2, ..., an of the
matrix A belong to the column space spanned by a given basis u1, u2, ..., uk:

aj =
k

∑
i=1

ṽkjuj .

This can be written as A = UV H , where U is the matrix of columns u1, u2, ..., uk and V is the
matrix of elements vji = ṽ

∗
ij (where ∗ denotes complex conjugation). Conversely, if A ∈ Cm×n

is a matrix that can be written as A = UV H with U ∈ Cm×k and V ∈ Cn×k its columns belong
to a space of dimension k or less, thus assuring A ∈ Cm×nk . ∎

The previous theorem tells us that k-rank matrices are a suitable representation, in their
outer-product form, for matrices or sub-matrices arising from discrete integral operators where
the kernel can be approximated in the way described in the previous section. The following
definition distinguishes the cases where a k-rank matrix representation is advantageous in
comparison to the classical full-matrix representation.

Definition 3 (Low-Rank Matrix) A matrix A ∈ Cm×n such that A ∈ Cm×nk for some k is
called a low-rank matrix if the storage of its outer-product representation requires less elements
than that of its full representation, i.e., a matrix for which k, m and n satisfy

k(m + n) <mn.

If parts of the system matrix arising from a discrete integral operator can be approximated
by low-rank matrices, the overall storage cost will be less than that of storing all its elements.
In general, the size of the sub-matrices that cannot be approximated by low-rank matrices can
be controlled, as it will be seen the following sections.

3.2.3 Basic Operations Involving Low-Rank Matrices

The main task to be carried after the application of a Galerkin discretization to the integral
representation of partial differential equations is the solution of the linear equations associated
to the system matrix. The main operation required to solve such linear systems is going to
require matrix-vector multiplications in order to solve the linear system via iterative methods.
Thus, a low-rank representation is desired to provide a matrix-vector multiplication using less
arithmetic operations than a full matrix representation.

A matrix-vector multiplication of a matrix A ∈ Cm×n by a vector x ∈ Cn requires m (2n−1)
arithmetic operations (mn multiplications and m (n − 1) sums of floating complex numbers).
If the matrix A is of rank k, and can thus be written as A = UV H , then product Ax can be
computed with k (2n − 1) +m (2k − 1) = 2k (m + n) −m − k arithmetic operations (k (m + n)

10

multiplications and k (m+n)−m− k sums of floating complex numbers). Assuming we have a
suitable low-rank representation of the matrix A, then the product by a vector can be improved
using this representation provided that

mn > k (m + n) −
1

2
k. (8)

Other operation that is extensively used, especially in the determination of the quality of
matrix approximations, is the computation of the Frobenius Norm. The Forbenius norm of a
matrix A is computed as

∥A∥F =
√
trace(AHA) =

¿
Á
ÁÀ

m

∑
i=1

n

∑
j=1

∣aij ∣2,

and requires 2mn − m − n + 1 operations (mn multiplications and (m − 1)(n − 1) sums
of floating complex numbers). If the matrix A has a k-rank approximation and can thus be
written as A = UV H then the Frobenius norm can be computed as

∥A∥F = ∥UV H
∥F =

¿
Á
Á
ÁÀ

k

∑
i=1

k

∑
j=1

(U1..m,i)
H U1..m,j (V1..n,i)

H V1..n,j ,

where U1..m,i is the i-th column vector of matrix U . Such computation can be performed in
2k2(m+n)− 2k + 1 operations (k2(m+n+ 1) multiplications and k2(m+n− 1)+ 1− 2k sums of
floating complex numbers), thus the computation of the Frobenious norm of a k-rank matrix
can be improved in speed provided that

mn > (k2
+

1

2
) (m + n) − k (9)

Condition (9) is stronger than condition (8). Improvement in the storage of sub-matrices
of the system matrix and in the speed of computations provided the both conditions are met
will prove to be critical tools in scaling a problem’s size, and are the center of the fast methods
for the BEM.

3.2.4 Connection with the Classical Fast Methods

The most prominent classical fast methods for the acceleration of the discretized boundary
integral equation based on kernel decomposition (local existence of degenerate approximants to
the kernel) are the Fast Multipole Method (FMM), the Panel Clustering Method and the Cross-
Approximation techniques. This section relates the exposed ideas to the core mechanisms by
which these different methods work. Other well known techniques based on different principles
not discussed in this report are the Adaptive Integral Methods (AIM), the Pre-corrected Fast
Fourier Transform (pFFT), and the wavelet compression techniques.

As stated above, the main idea behind the studied fast methods for the BEM is that,
at least for some couples of regions Γx,Γy ⊂ Γ the surface double-integral can be computed
using a degenerate kernel approximant, thus allowing for the explotation of the advantages
discussed. The selection of couples of subsets of Γ that allow for this approximation is related
to the smoothness of the kernel G(x, y), which in general can be assured for x = y, and it
is dependent on the parameter dist{Γx,Γy}. In the following exposition of the classical fast
methods using degenerate kernels it is assumed that the sub-matrices to be approximated
by low-rank approximants has been performed using a criterion dist{Γx,Γy} > η for a given
parameter η > 0. Desirable properties of the approximations can also be derived from criteria
considering the the sizes diam(Γx) and diam(Γy) of the sub-domains. A discussion on the

11

subject is provided in the next section and an historical review of the development of the
mentioned methods and techniques is given at the end of this report.

Fast Multipole Methods (FMM)

FMM formulate an approximation to the kernel such that matrix-vector multiplication
operations involving approximated sub-matrices can take profit on its low-rank. The sub-
matrix approximant is never store. In the following, a brief description of the method is
exhibited. For further details the reader is referred to [11] for the application of the method to
the case of the Helmholtz’s equation.

Let mx and my be the centroids of Γx and Γy respectively. The vector x− y for x ∈ Γx and
y ∈ Γy can be written as

x − y = (x −mx) + (mx −my) + (my − y).

Using Gegenbauer’s Addition Theorem the Green’s function for the Helmholtz equation can
be written as

G(x, y) =
eik∥x−y∥2

4π∥x − y∥2
=

ik

16π2
lim
L→∞∫

s∈S

eiks⋅(x−mx)TLmx−my(s)e
iks⋅(my−y)dS(s),

where S is the unit sphere and the transfer function TLmx−my(s) is defined as

TLmx−my(s) =
L

∑
l=0

(2l + 1)ilh
(1)
l (k∥mx −my∥)Pl (cos(s, (mx −my))) .

In the previous definition h
(1)
l is the spherical Hankel function of the first kind and order l, Pl

is the Legendre polynomial of order l, and cos(s, (mx −my)) is the cosine of the angle between
s and mx −my.

When computing the interaction between two sub-domains, the transfer function can be
truncated to a sufficiently large number L and the integration order can be changed to take
advantage of the kernel decomposition:

∫
Γx
∫

Γy

G(x, y)ϕi(x)ϕj(y)dΓx(x)dΓy(y) =

∫
Γy
∫
s∈S

[TLmx−my(s)(∫
Γx

eiks⋅(x−mx)ϕi(x)dΓx(x))] e
iks⋅(my−y)ϕj(y)dS(s)Γy(y).

The multipole decomposition then allows for matrix-vector multiplications without the
need to compute the matrix and with less operations as follows. Every time the matrix is
multiplied by a vector the operation is performed in sub-matrices corresponding to sub-domains
of integrations. For the multiplications associated to the sub-matrix related to the interactions
between Γx ⊂ Γ, first we compute

FΓx(s) = ∫
Γx

eiks⋅(x−mx)ϕi(x)dΓx(x),

using a discretization of S. Then for every other domain interacting with Γx we can compute

∫

Γx

∫

Γy

G(x, y)ϕi(x)ϕj(y)dΓx(x)dΓy(y) = ∫
Γy

∫

s∈S

FΓx(s)T
L
mx−my(s)e

iks⋅(my−y)ϕj(y)dS(s)Γy(y),

12

using the precomputed values FΓx(s) for the discretized unit sphere S, if this other domain,
depending on dist(Γx,Γy), allows for a truncated multipole expansion.

Panel Clustering Methods

The so-called Panel Clustering Methods are similar to the FMM in that they rely in the
identification of pairs of sub-domains Γx,Γy ⊂ Γ separated enough so to assure smoothness
of the kernel function, and then they seek to approximate it by a degenerate approximant
thus allowing for the advantages of its low-rank features when performing matrix-vector mul-
tiplication operations. Also as with FMM, the approximant sub-matrices are never stored.
The main difference between Panel Clustering Methods and FMM is the way in which they
approximate the kernel; in the FMM it was approximated by a multipolar expansion based
on the Gegenbauer’s Addition Theorem, while in the Panel Clustering Methods the kernel
is approximated for couples of sub-domains contained in axiparallel boxes (panels) where a
Lagrange polynomial interpolation is performed for a grid of Chebyshev points to minimize
the Runge’s phenomenon present in interpolation. In the following, the approximation of the
kernel is illustrated keeping a simple formalization, for further details the reader is referred
to [31], Chapter 7, where a complete description of the method is given.

Let B(Γx) and B(Γy) the smallests axiparallel boxes containing the subsets Γx,Γy ⊂ Γ
respectively. Let Θm

B(Γx) be the set of m3 Chebyshev points, a 3-dimensional tensorization of
the set of m points, where each component of a point ξ ∈ Θm

B(Γx) is given by a Chebyshev

point defined along the interval of one side of the axiparallel box B(Γx). Let Lmξ (x) be the
tenderized Lagrange polynomial for that point ξ ∈ Θm

B(Γx), meaning that

Lmξ (x) = {
1 if x = ξ,

0 if x = ξ̃ ∈ Θm
B(Γx) and ξ̃ ≠ ξ.

Using the above-sketched polynomials a given function f ∶ B(Γx)→ C, sufficiently smooth, can
be approximated as

f(x) ≈ (Πm
B(Γx)f) (x) = ∑

ξ∈Θm
B(Γx)

f(ξ)Lmξ (x).

A degenerate approximation G̃ of a kernel G can be computed as

G̃(x, y) = (Πm
B(Γy)Π

m
B(Γx)G) (x, y) = ∑

ξy∈ΘmB(Γy)
∑

ξx∈ΘmB(Γx)

G(ξx, ξy)L
m
ξx(x)L

m
ξy(y).

Cross-Approximations Methods

Cross-approximation methods also rely on the existence of a degenerate kernel but it is
different from the previously exhibited methods in that they do not use knowledge of kernel
other than the fact that a degenerate approximant exists. These methods provide low-rank
approximations for sub-matrices using only a few entries of the original matrix relying on
the knowledge that the kernel has a degenerate approximant rather than finding that explicit
approximant. This characteristic allows for the use of previously written and tested BEM code,
improving its storage and computational complexity. Another key feature of this methods in
contrast with the previous ones is that they provide an explicit approximant to sub-matrices of
the system matrix and not only an approximative low-rank method to perform matrix-vector
multiplications. Together with a suitable structure, such as that provided by the hierarchical
matrix method, these approximations can be used in matrix summation, multiplication and,
using these operations, in matrix factorization and inversion. These possibilities can be ex-

13

ploited in the construction of pre-conditioners and in more complex integral equation (e.g.,
single-layer and double-layer, combined field integral equation).

The idea behind cross-approximation methods is to perform a rank-revealing decomposition
of a matrix Z in order to construct consecutive approximants Sk growing in rank and diminish-
ing the quantity ∥Z−Sk∥F . If the matrix Z is known to have a suitable low-rank approximation
the number of computed consecutive approximants k required to achieve a good approximation
could be low enough to take advantage in terms of storage and computational complexity as
detailed in this section.

Let us consider a sub-matrix Z and let us notate Zi1..n the i-th row and Z1..n j the j-th
column. Starting from a residue matrix R0 = Z a cross-approximation algorithm diminish by
one the rank of R0 to obtain a second residue matrix R1 and so forth obtaining new residue
matrices such that rank(Rk+1) ≤ rank(Rk). To diminish the rank, a column and a row are
chosen for elimination in each step:

Rk+1 = Rk − ((Rk)ikjk)
−1

(Rk)1..m, jk(Rk)ik,1..n

The matrices that are subtracted to Rk in each step account for the difference Z −Rk and
are gathered in the approximant Sk: Z = Sk +Rk. The algorithm can be stopped either when
a maximum rank kmax has been attained or when the approximant Sk is close enough to the
matrix Z, i.e., ∥Z −Sk∥F = ∥Rk∥F ≤ ε for a specified tolerance ε resulting in kmax(ε) steps. The
approximant matrix Skmax is then available as:

Skmax =
kmax−1

∑
k=0

((Rk)ikjk)
−1

(Rk)1..m, jk(Rk)ik,1..n

A key observation is that the construction of Sk can be performed without using all the
elements of the matrices Rk for previous steps. It is possible to store, for the matrices Rk, only
the rows and columns that undergo change during the algorithm preserving a complexity that
behaves asymptotically also as O(k(m + n)) if Z ∈ Cm×n.

The choice of the pivots ik and jk in each step is a non-trivial task and it is related to the
geometry of the problem. Also, if the approximation is to be determined for a fixed tolerance
ε, the computation of the norm ∥Z − Sk∥F in each step must be available with a complexity
consistent with the other operations involved in the algorithm (i.e., O(k(m+n)) if Z ∈ Cm×n).
Finally, the number of steps required to achieved an approximant even under optimal pivot
choices must be estimated a priori in order to assure that the cross-approximation approach is
advantageous. These issues are currently the subject of active research and will be discussed
briefly later on in this chapter. Further reading on the subject may be found in Bebendorf’s
book [6], chapter 3, and in Hackbusch’s lecture notes [10], chapter 4. There are several
methods based on cross-approximation of matrices, being the most prominent the Adaptive
Cross-Approximation (ACA) methods, which set a given tolerance ε for the approximation an
compute the approximant adaptively increasing its rank.

3.3 The Hierarchical Matrices Methods

The hierarchical matrices method allows for the exploitation of the advantages of low-
rank matrices in storage and computational complexity. A system matrix associated to a
discrete integral operator may not have a suitable low-rank representation, but many of its
sub-matrices can be proven to have one. A hierarchical matrix is an abstract structure that
allows for the division of the system matrix in sub-matrices, permitting the exploitation of low-
rank approximations whenever possible, providing and algebraic structure in order to perform
the matrix operations required to solve the system; most notably, matrix-vector multiplications
used in iterative solvers. Hierarchical matrices are historically associated to the exploitation
of low-rank approximations using the Panel Clustering, the Taylor expansion or the adaptive

14

cross-approximation method. The Fast Multipole Method has relied in a similar but different
technique also aiming to divide the system matrix; however, the procedure can also be described
in term of hierarchical matrices.

3.3.1 Index Sets, Clusters and Cluster Trees

In this section a notational framework is to be developed. This notational framework will
provide means to refer to the sub-matrices of the system matrix and to identify the matrix
elements with the basis functions spanning the finite subspace of the function space where the
variational version of the integral equation is defined.

Definition 4 (Index Set) An index set I = {1,2..., n} ⊂ N is a set containing the indexes of
the basis functions used in a Galerkin discretization.

Definition 5 (Cluster) A cluster is a set of indexes t ⊆ I, where I is the index set related to
a Galerkin discretization.

Definition 6 (Sub-Vector Associated to a Cluster) Let x ∈ Cm be a given vector and let
I be the index set I = {1,2...m}. Let t ⊆ I be a cluster for the index sets I. The sub-vector
xt ∈ C∣t∣ associated to the cluster t is the restriction of x to the indexes belonging to t.

Given a discretization Γh of a surface Γ over which a Galerkin discretization base has been
considered with indexes given by the index set I, a cluster t ⊆ I can be associated with a
spatial domain.

Definition 7 (Cluster Domain) Let Ωi ∈ Rd be the support of the basis function ϕi. The
support of the cluster t is then

Ωt =⋃
i∈t

Ωi.

The main idea behind the hierarchical matrix or other similar structures used in the fast
methods relies on the concept of divide-and-conquer: to divide the system matrix up to the
point where low-rank matrices can be used to provide an overall advantage. The key division
is given at the level of the basis functions indexed by the index set I, which is contained in the
abstract structure of the cluster tree.

Definition 8 (Cluster Tree) Let us define a tree TI ∶= (N,E) of clusters with a set of nodes
N and a set of edges E. Let S(t) be the set of successors of the node t ∈ N and L (TI) ⊂ N
the set of nodes that have no successor nodes (the leaves of the tree). The tree TI ∶= (N,E) is
a cluster tree of an index set I if

1. I ∈ N is the root of the tree;

2. ∀t ∈ N/L (TI)(t = ⊍
t′∈S(t)

t′ ≠ ∅);

3. the degree of a node t ∈ N is defined as the number of successors deg(t) = ∣S(t)∣ for each
node in N/L (TI) and it is bounded form bellow: deg(t) ≥ 2.

Remark 1 (Minimum Size nmin of a Leaf Cluster) In practice it is useful to work with
clusters having a minimal size nmax > 1 rather than dividing the index set up to singleton leaves.
This number nmin is used in the construction of the cluster tree assuring that no division is to
be carried out if it will produce clusters with less than nmin elements. This number controls the
size of the sub-matrices that will not be approximated by low-rank matrices and that will thus
have to be operated and stored as full matrices.

15

The following set of definitions provides the required tools to characterize important prop-
erties of the cluster trees.

Definition 9 (Level of a Cluster in a Cluster Tree) Let TI ∶= (N,E) be a cluster tree for
the index set I.The level of a given cluster t ∈ N in the cluster tree TI , notated as level(t), is
the distance to the root I, i.e., the number of successions (application of S) from I required to
reach the node t in the tree.

Definition 10 (Level l of a Cluster Tree) The level l of a cluster tree TI , notated as T
(l)
I ,

is the set of the nodes t ∈ N that have level equal to l:

T
(l)
I = {t ∈ N ;TI ∶= (N,V), level(t) = l}.

Remark 2 (Partitions of I) According to Definition 8, at every level l, T
(l)
I is a partition

of I in the sense that
I = ⊍

t′∈T (l)I

t′.

.

Definition 11 (The Set of Levels That Have Leaves) The set L of the levels of a tree
TI that have at least one leaf is defined as

L = {l ∈ N0;L(TI) ∩ T
(l)
I ≠ ∅} .

Definition 12 (Depth of a Cluster Tree) The depth of a cluster tree TI , notated as depth(TI),
is the number of different levels present in the tree, i.e.,

depth(TI) = 1 +max
t∈N

{level(t)} .

Definition 13 (Balanced Cluster Tree) A tree TI is balanced if the quantity

R ∶= min
t∈N/L(TI)

{∣t1∣/∣t2∣; t1, t2 ∈ S(t)}

is bounded from below independently of ∣I ∣.

Lemma 2 (Number of Nodes ∣N ∣ in a Cluster Tree) Let TI ∶= (N,E) be a cluster tree
for the index set I and let q ∶= mint∈N/L(TI) deg(t). Then, the number of nodes ∣N ∣ of the
cluster tree TI is bounded by the number of leaves as

∣N ∣ ≤
q∣L(TI)∣ − 1

q − 1
≤ 2∣L(TI)∣ − 1.

Demonstration The number of nodes that have successor nodes is ∣N ∣− ∣L(TI)∣. The number
of nodes which are successors of some other node is at least q (∣N ∣ − ∣L(TI)∣). The total number
of nodes is the numbers of nodes which are successor plus the root node, thus yielding

q (∣N ∣ − ∣L(TI)∣) + 1 ≤ ∣N ∣,

from which the desired bound for ∣N ∣ can be established: ∣N ∣ ≤ (q∣L(TI)∣−1)/(q−1). Addition-
ally, Definition 8 assures q ≥ 2, which implies that q/(q − 1) ≤ 2 and 1/(q − 1) ≤ 1, thus allowing
for a simple bound for the number of nodes in the tree: ∣N ∣ ≤ 2∣L(TI)∣ − 1. ∎

16

Remark 3 (Storage Complexity of a Cluster Tree) Since the number of leaves ∣L(TI)∣
of a cluster tree TI is bounded by ∣I ∣/nmin, the previous lemma shows that the storage complexity
of a cluster tree is linearly bounded by the cardinality ∣I ∣ of I: ∣N ∣ ≤ 2∣I ∣/nmin − 1.

Lemma 3 (Maximum Depth of a Balanced Cluster Tree) For a balanced cluster tree
TI with q ∶= mint∈N/L(TI) deg(t) and R ∶= mint∈N/L(TI){∣t1∣/∣t2∣; t1, t2 ∈ S(t)} and for a node/cluster

t of level l in the cluster tree it holds that ∣t∣ ≤ ∣I ∣ξ−l, with ξ = R(q − 1) + 1 ≥ 1, and that the
depth of the tree is bounded by

depth(TI) ≤ 1 + logξ(∣I ∣/nmax) ∼ logξ ∣I ∣.

Demonstration (Taken from Bebendorf [6], page 31) Let us first find a lower bound for the
ratio of the cardinalities of a cluster and one of its successor clusters in a cluster tree. Let
us consider a non-leaf cluster t ∈ N/L(TI) and one of its successor cluster t′ ∈ S(t). Given
q ∶= mint∈N/L(TI) deg(t) and R ∶= mint∈N/L(TI){∣t1∣/∣t2∣; t1, t2 ∈ S(t)} a lower bound can be
found for the ratio

∣t∣

∣t′∣
=

∣t′∣ + ∑
s∈S(t),s≠t′

∣s∣

∣t′∣
= 1 + ∑

s∈S(t),s≠t′

∣s∣

∣t′∣
≥ 1 + (∣S(t)∣ − 1)R ≥ 1 + (q − 1)R = ξ

Secondly, let us consider the path connecting the root and the highest level node in a tree
of depth D, composed of edges e1, e2, ...eD−1 and passing through the intermediate nodes
n2, n3, ...nD−1. From the previous result we know that

ξ∣nl+1∣ ≤ ∣nl∣, for l = 1, ...,D − 1,

from which we obtain that
ξD−1

∣nD ∣ ≤ ∣n1∣ = ∣I ∣,

which gives us the desired bound for the depth:

(D − 1) log ξ ≤ log
∣I ∣

∣nL∣
≤ log

∣I ∣

nmin

⇒ L ≤ 1 +
log ∣I ∣/nmin

log ξ
= 1 + logξ

∣I ∣

nmin
∼ logξ ∣I ∣

∎

A geometrical approach to construct a cluster tree for a set index I representing the basis
of a Galerkin discretization is to subdivide the spatial domain ΩI in consecutive sub-domains
generating successors for each cluster based on the geometrical information available. Classical
choices are to start from the root I (with associated domain ΩI) and subdivide this domain
recursively in 8, 4 or 2 regular subdivisions assuring that clusters (nodes of the cluster tree)
have cardinality larger than a number nmin set for the tree. This number assures that all the
leaves of the tree, t ∈ L(TI), have at least nmin elements. These cluster tree structures are
known as Octree when using 8 subdivisions, Quadtree when using 4 subdivisions and Binary
Tree when using 2 subdivisions.

Remark 4 (Balanced Trees and Principal Component Analysis (PCA)) The mentioned
construction of a cluster tree, called geometric bisection, may produce unbalanced trees. The
subdivisions of domains is performed using Bounding Boxes, box-like domains of tensorized
segments along the reference axes. Modifications to the geometric subdivision approach are used
to avoid unbalanced trees if needed. For example, the Principal Component Analysis (PCA), in
which the subdivision is performed also geometrically but according to new spatial axes oriented
along the main directions of a set of points representative of the support of the basis functions.

17

3.3.2 Block-Clusters

Since the elements in a system matrix arise from the bilinear operator in a variational
formulation involving a discrete integral operator, they are related to the interaction of couples
of basis functions through the kernel of the integral equation. In order to analyze blocks of
sub-matrices of the system matrix it is useful to provide proper notations to link the concept
of clusters and their interaction with basis functions belonging to other basis functions that
may be they be contained in that cluster or in others.

Definition 14 (Block-Cluster) Let us consider two (possibly the same) index sets I and J
indexing basis functions spanning a finite-dimensional sub-space of a functional space where
the variational formulation of the integral equation is to be solved. A block-cluster t× s is a set
of pairs of indexes belonging to given index sets, t ⊆ I and s ⊆ J .

A sub-matrix of the system matrix represents the interaction of pairs of elements of the
basis of the functional space of the variational formulation for the integral equation. Each
element of a sub-matrix represents the interaction of a pair of functions. The block-clusters
represent sets of interacting pairs of basis functions giving rise to a sub-matrix of the system
matrix.

Definition 15 (Sub-Matrix Associated to a Block-Cluster) Let A ∈ Cm×n be a given
matrix containing the pairwise interactions of the basis functions indexed by the index sets
I = {1,2...m} and J = {1,2...n}. Let t × s ⊆ I × J be a block-cluster for the index sets I and
J . The sub-matrix At×s ∈ C∣t∣×∣s∣ associated to the block-cluster t × s is the restriction of A to
the indexes belonging to t × s.

3.3.3 Geometrical Admissibility of Block-Clusters

The block-cluster provides a structure to identify sub-matrices of the system matrix with
interactions of pairs of basis functions in the sense provided by the bilinear operator of the
variational formulation of the integral equation. The core of the hierarchical matrix and the
other fast methods for the solution of the boundary integral equations is to identify which sub-
matrices (which block-clusters) can be represented in a more advantageous way. In the case of
the hierarchical matrix method the key issue is the division of the system matrix in a hierarchy
of sub-matrices identifying when they can be represented by a suitable low-rank approximation.
This characteristic of a block-cluster is linked to the underlying integral equation, and reflects
the fact that the Schwartz integral kernel G(x, y) of the integral equation is singular only for
x = y, situation that arises when Ωt∩Ωs ≠ ∅ for the block-cluster t×s. This geometrical notion
will be used to select block-clusters that have associated matrices with desirable properties in
the sense that low-rank approximations can be fruitfully computed. The following criterion
assures that the geometrical supports of two clusters constituting a block-cluster are disjoint. It
will be shown later that this criterion also assures other features of the associated sub-matrix,
which are desirable for computing low-rank approximations.

Definition 16 (Geometrical Admissibility of a Block-Cluster) A block-cluster t × s ⊆

I × J for the index sets I = {1,2, ...,m} and J = {1,2, ..., n} indexing the basis functions is
said to be geometrically admissible if and only if

min{diam(Ωt), diam(Ωs)} ≤ η dist(Ωt,Ωs), (10)

for some η > 0.

The previous definition provides a concrete procedure with which to test wether a block-
cluster is admissible or not. There still remains the problem of the complexity required to

18

test the geometrical admissibility, especially in the computation of dist(Ωt,Ωs), which requires
O(∣t∣ ⋅ ∣s∣) operations. The next definition proposes a new condition suitable for special cases
of great interest that only requires O(∣t∣ + ∣s∣) operations.

Definition 17 (Geometrical Admissibility for Polygonal Supports) Let Ωt and Ωs have
piecewise polygonal supports (Ωi is a polygon for all i ∈ t∪s) and let mt and ms be the centroids
of Ωt and Ωs respectively. Let us set

ρt ∶= sup{∥x −mt∥2;x ∈ Ωt} and ρs ∶= sup{∥x −ms∥2;x ∈ Ωs}.

A block-cluster t× s ⊆ I ×J for the index sets I = {1,2, ...,m} and J = {1,2, ..., n} indexing the
basis functions is said to be simply admissible if and only if

2 min{ρt, ρs} + η(ρt + ρs) ≤ η∥mt −ms∥2, (11)

for some η > 0.

Lemma 4 () Simply admissible block-clusters are geometrically admissible.

Demonstration For two clusters t ⊂ I and s ⊂ J it is easy to check that

dist(Ωt,Ωs) ≥ ∥mt −ms∥2 − ρt − ρs.

If the block-cluster t × s is simply admissible

2 min{ρt, ρs} + η(ρt + ρs) ≤ η∥mt −ms∥2 ⇒ 2 min{ρt, ρs} ≤ η (∥mt −ms∥2 − ρt − ρs)

⇒ 2 min{ρt, ρs} ≤ η ⋅ dist(Ωt,Ωs).

Considering that diam(Ωt) ≤ 2ρt and diam(Ωs) ≤ 2ρs the desired bound is obtained. ∎

It is clear that for a piecewise polygonal support condition (10) takes O(∣t∣ ⋅ ∣s∣) operations,
since the computation of the distance between Ωt and Ωs would require two nested loops
computing the maximum distance between each pair of polygonal support pieces indexed by t
and s. On the other hand it is cleat that condition (11) requires only O(∣t∣ + ∣s∣) operations,
since the centroids can be computed with a loop over the polygons and the maximum radius
form the centroids can be compute with a seconds loop over the polygons.

3.3.4 Block-Cluster Trees and Admissible Partitions of the System Matrix

The following definitions provides a formal structure to construct a subdivision of the system
matrix in sub-matrices using the before-mentioned geometrical criterion and a cluster-tree in
aims to identify which sub-matrices can be approximated by a low-rank approximation.

Definition 18 (Block-Cluster Tree) Let TI and TJ be cluster-trees for the index sets I and
J . Let SI and SJ be the successor functions of each tree. The block-cluster tree TI×J ∶= (N,E)

for the product I ×J is constructed as follows:

1. The root of the tree is the set I ×J .

2. The vertices of the tree are block-clusters t × s ⊆ I ×J .

3. The vertices of the tree are defined by the succession function SI×J :

SI×J (t×s) = {
∅, if t × s is geom. admissible or SI(t) = ∅ or SJ (s) = ∅,
SI(t) × SJ (s), else.

19

Lemma 5 (Depth of a Block-Cluster Tree) The depth depth(TI×J) of a block-cluster tree
TI×J is bounded by the depths of the generating cluster trees:

depth(TI×J) ≤ min{depth(TI), depth(TJ)}

Demonstration It is easy to see that condition 3 of the construction of a block-cluster tree
TI×J specified in Definition 18 assures that depth(TI×J) ≤ min{depth(TI), depth(TJ)}. ∎

The leaves L(TI×J) of the block-cluster tree TI×J form an admissible partition P ∶=

L(TI×J) of the root block-cluster I ×J in the sense given by the following definition.

Definition 19 (Admissible Partition) An admissible partition P of I × J is a subset
P ⊂ P(I ×J) of the subsets of I ×J that complies with the following statements:

1. I ×J = ⋃
b∈P

b.

2. ∀b1, b2 ∈ P (b1 ∩ b2 ≠ ∅⇒ b1 = b2).

3. ∀b = t × s ∈ P (b is a geometrically admissible block-cluster or t ∈ L(TI) or s ∈ L(TJ)).

Definition 20 (Admissible and Non-admissible Leaves of a Block-Cluster Tree) The
set LA(TI×J) is the subset of leaves of TI×J that are geometrically admissible:

L
A
(TI×J) = {t × s ∈ L(TI×J); t × s is geometrically admissible} .

The set LNA(TI×J) = L(TI×J)/L
A(TI×J) is the subset of leaves of TI×J that are not admis-

sible.

For an admissible partition P of I × J given by the block-cluster tree TI×J a common
measure of complexity useful in the demonstration of several of the characteristics of hierarchical
matrices is the sparsity constant.

Definition 21 (Sparsity Constant) Let TI and TJ be cluster trees for the index sets I and
J and let TI×J be the block-cluster tree for I × J . Similarly to the number of elements in a
given row of a matrix we denote the number of blocks t× s ∈ TI×J associated to a given cluster
t ∈ TI as

crowsc (TI×J , t) ∶= ∣ {s ⊆ J ; t × s ∈ TI×J } ∣.

Similarly to the number elements in a given column of a matrix we denote the number of blocks
t × s ∈ TI×J associated to a given cluster s ∈ TJ as

ccolsc (TI×J , s) ∶= ∣ {t ⊆ I; t × s ∈ TI×J } ∣.

The sparsity constant of a block-cluster tree TI×J is then defined as

csc(TI×J) ∶= max{max
t∈TI

crowsc (TI×J , t),max
s∈TJ

ccolsc (TI×J , s)} .

Remark 5 (Boundedness of the Sparsity Constant) The sparsity constant csc(TI×J) can
be kept bounded through a parametrized construction of the clusters trees TI and TJ giving rise
to the block-cluster tree TI×J . A method to do so is the Principal Component Analysis (PCA)
seen in Remark 4.

Lemma 6 (Storage Complexity of a Block-Cluster Tree) Let TI and TJ be cluster trees
for the index sets I and J and let TI×J ∶= (N,E) be the block-cluster tree for I×J constructed
with sparsity constant csc(TI×J). Then, the number of nodes ∣N ∣ of TI×J is bounded as

∣N ∣ ≤ csc(TI×J) (
2

nmin
min{∣I ∣, ∣J ∣} − 1) .

20

Demonstration The number of nodes in a block-cluster tree TI×J can be represented as

∣N ∣ = ∑
s×t∈TI×J

1.

If depth(TI) ≤ depth(TJ) then

∣N ∣ = ∑
s×t∈TI×J

1 = ∑
t∈TI

∣{s ∈ J ; t × s ∈ TI×J }∣ = ∑
t∈TI

crowsc (TI×J , t) .

Using Definition 21 and notating the number of nodes of TI as ∣TI ∣ this means that

∣N ∣ ≤ csc(TI×J)∣TI ∣.

Using now Lemma 2 and Remark 3 it is straightforward that

∣N ∣ ≤ csc(TI×J) (
2

nmin
∣I ∣ − 1) .

On the contrary, if depth(TJ) ≤ depth(TI) the bound would be

∣N ∣ ≤ csc(TI×J) (
2

nmin
∣J ∣ − 1) .

In any case, the bound of the lemma holds. ∎

3.3.5 Hierarchical Matrices

In this section, the structure of the hierarchical matrix is presented for binary cluster trees
TI and TJ for the index sets I and J (a generalization to arbitrary cluster-trees is possible
using nested dissection). The block-cluster tree TI×J is assumed to be generated using the
above-mentioned geometrical admissibility condition.

Definition 22 (The Set of Hierarchical Matrices) Let TI×J be the block-cluster tree for
the index sets I and J and let P ∶= L(TI×J) be an admissible partition of I × J . The set of
blockwise k-rank hierarchical matrices for the bock-cluster tree TI×J is the set

H(TI×J , k) = {A ∈ CI×J ;∀b ∈ P (b is admissible ⇒ rank(Ab) ≤ k)} .

In the following the elements of H(TI×J , k) will be called H-matrices.

Theorem 5 (Storage Complexity of H-matrices) Let csc be the sparsity constant of the
block-cluster tree TI×J . The number Nstorage(A) of elements to be stored for a H-matrix
A ∈H(TI×J , k) is bounded by

Nstorage(A) ≤ cscmax{k,nmin} (depth(TI)∣I ∣ + depth(TJ)∣J ∣) .

If TI and TJ are balanced cluster trees the previous bound can be further extended to a more
easily computable number, by virtue of Lemma 3, as

Nstorage(A) ≤ cscmax{k,nmin} (∣I ∣ logξ ∣I ∣ + ∣J ∣ logξ ∣J ∣) ,

for a constant ξ depending on the construction parameters for the cluster trees, as specified in
the lemma.

21

Demonstration(Taken from [14], Chapter 2) The total number of elements to be stored resides
in the sub-matrices associated to the leaves of TI×J , which can be separated by their geometric
admissibility. Let NA(t × s) be the maximum number of elements required to store the sub-
matrix associated to an admissible leaf t × s and let NNA(t × s) be the maximum number of
elements required to store a non-admissible leaf t × s. Separating the elements associated to
admissible and non-admissible leaves yields

Nstorage(A) ≤ ∑
t×s∈LA(TI×J)

NA
(t × s) + ∑

t×s∈LNA(TI×J)
NNA

(t × s).

It is easy to see that NNA(t×s) ≤ nminmax{∣t∣, ∣s∣} ≤ nmin(∣t∣+ ∣s∣). On the other hand Theorem
4 assures that NA(t × s) ≤ k(∣t∣ + ∣s∣), which implies that

Nstorage(A) ≤ ∑
t×s∈LA(TI×J)

k(∣t∣ + ∣s∣) + ∑
t×s∈LNA(TI×J)

nmin(∣t∣ + ∣s∣)

≤ ∑
t×s∈L(TI×J)

max{k,nmin}∣t∣ + ∑
t×s∈L(TI×J)

max{k,nmin}∣s∣.

Furthermore, the sum over all the leaves of the block-cluster tree can be bounded by the sum
over the leaves of one of the constituting cluster-trees using the sparsity constant, and this in
turn can be bounded by the sum of all nodes in the levels containing leaves:

Nstorage(A) ≤ ∑
l∈L(TI)

∑

t∈T (l)I

cscmax{nmin, k}∣t∣ + ∑
l∈L(TJ)

∑

s∈T (l)J

cscmax{nmin, k}∣s∣.

As noted in Remark 2, every level l of a cluster tree is a partition of the index set, and thus

Nstorage(A) ≤ ∑
l∈L(TI)

cscmax{nmin, k}∣I ∣ + ∑
l∈L(TJ)

cscmax{nmin, k}∣J ∣.

Additionally, the number of levels containing leaves can be bounded by the depth of the tree
giving the desired result. ∎

In the rest of this section we define the most relevant operation involving the H-matrices in
the context of the resolution of integral equations, the matrix-vector product. We also present
its arithmetic complexity.

Definition 23 (Vector Composition Using Clusters) Let TI be a cluster tree for the in-
dex set I, and let t ⊂ I be one of the clusters of the tree. The composition CIt (x) of a vector
x ∈ C∣t∣ is a vector in C∣I∣ whose restriction (CIt (x))t to the cluster t (in the sense of Definition
6) is equal to x and such that

∀i ∈ I (i ∉ t⇒ (CIt (x))i = 0) .

Definition 24 (H-matrix Multiplication by a Vector) Let A ∈ H(TI×J , k). Let P ∶=

L(TI×J) be the admissible partition of the root block-cluster I×J . The product Ax is computed
as

Ax = ∑
t×s∈P

CIt (At×sxs).

Lemma 7 (Arithmetic Complexity of Matrix-Vector Product for H-matrices) The num-
ber of arithmetic operations Nmv(A) required to multiply the H-matrix A ∈ H(TI×J , k) by
x ∈ C∣J ∣ is bounded by

Nmv(A) ≤ 2Nstorage(A).

22

Demonstration(Taken from [14], Chapter 2) To perform the multiplication of an H-matrix
with a vector, ∣L (TI×J)∣ matrix-vector multiplications must be made; some of them with full
matrices and some of them low-rank matrices of rank k.

The costNstorage(At×s) of storing a full matrix At×s is of ∣t∣⋅∣s∣ elements. The costNmv(At×s)
of multiplying a full matrix with a vector is of ∣t∣ ⋅ ∣s∣ + ∣t∣(∣s∣ − 1) operations. Thus, for a full
matrix At×s, Nmv(At×s) ≤ 2Nstorage(At×s).

The cost Nstorage(At×s) of storing a k-rank matrix At×s is of k(∣t∣ + ∣s∣) elements. The cost
Nmv(At×s) of multiplying a k-rank matrix with a vector is of 2k(∣t∣ + ∣s∣) − ∣t∣ − k operations.
Thus, for a k-rank matrix At×s, we also have Nmv(At×s) ≤ 2Nstorage(At×s).

The cost of producing all the matrix-vector multiplications for the sub-matrices associated
to the leaves is less than 2Nstorage(A). ∎

3.4 Low-Rank Approximation of Matrices Arising in the Discretization of
Integral Operators

In the first section of this chapter we analyzed what low-rank matrices, how they arise in
the discretization of integral operators and how they reduce the computational complexity. In
the second section we described a special type of structure, the H-matrices, that can divide a
matrix, based on the geometry of the integration domain and the support of the basis functions,
into sub-matrices being either small enough or capable of being approximated by low-rank
matrices. In the present and third section we will study when do low-rank approximations
exist, how good are they, how to compute them and important features of these approximations
related to the complexity of their construction and the relation between rank and precision.

3.4.1 The Existence of Low-Rank Approximations

Lesser rank approximants can be computed for every matrix . The quality of the approxi-
mation will be given by its rank, and wether if that approximant is a low-rank approximation
will be dictated by compliance with Definition 3. The following theorem provides a method
for constructing lesser rank approximations for any matrix giving a relation between the rank
of the approximant and the precision of the approximation.

Theorem 6 (Best Approximation Via Singular Value Decomposition) Let the matrix
A ∈ Cm×n have a Singular Value Decomposition noted as

A = UΣV H

with unitary matrices U ∈ Cm×m and V ∈ Cn×n (UHU = Im×m and V HV = In×n) and
diagonal matrix Σ ∈ Cm×n

Σ = diag({σ1, .., σmin(m,n)}), σ1 ≥ σ2 ≥ ... ≥ σmin(m,n) ≥ 0.

Let ε be a desired accuracy. If σk > ε > σk+1, then the matrix

R =
k

∑
l=1

ulσlv
T
l ,

is the minimal rank approximation of A that fulfills ∥A −R∥2 ≤ ε.

Demonstration The demonstration can be found in the book Matrix Computations [12], by
Golub and Van Loan. ∎

Even for a matrix known to have a low-rank approximation a singular value decomposition
is a costly operation. For a m×n matrix the computational complexity of performing a singular

23

value decomposition is of O(mn2) operations (assuming m ≥ n), and its storage complexity
is of m2 + n2 + min{m,n}. The previous theorem is useful because it shows that lesser rank
approximations exist but, even if low-rank approximants exist, the procedure it proposes is
useless because its complexity overcomes the advantages of using low-rank approximations.

In general, approximating matrices of increasing rank and precision can be constructed
using only selected elements of the original matrix. This allows for the computation of low-
rank approximations with less operations and also avoids the need to compute all the original
matrix entries. These techniques are known as skeleton-approximations or cross-approximation
methods. The following definition provides the basic structure involved in cross-approximation
methods.

Definition 25 (Cross or Skeleton-Approximation) Let At×s be a matrix associated to the
block-cluster t × s. Let t̃ ⊂ t and s̃ ⊂ s be the sets of pivot rows and pivot columns of the matrix
At×s such that there exists a matrix S ∈ C∣t̃∣×∣s̃∣ that allows

∥At×s −At×s̃SAt̃×s∥2 ≤ ε.

The matrix R = At×s̃SAt̃×s is a cross or skeleton approximation of precision ε and rank
min{∣t̃∣, ∣s̃∣}.

The question remains wether if they exist, how to compute them, and if it can be done
efficiently. The following theorem provides a positive answer to the first question.

Theorem 7 (Existence of Cross-Approximations for Matrices Admitting Low-Rank Approximations)
Let M ∈ Cm×n admit a k-rank approximation, i.e., for a given ε > 0 there exists R ∈ Cm×nk such
that ∥M − R∥2 ≤ ε. Then there exist k pivots such that a cross approximation M̃ can be
constructed from M fulfilling

∥M − M̃∥2 ≤ ε(1 + 4k)

Demonstration The demonstration can be found in the article A theory of pseudo skeleton
approximations [13], by Goreinov, Tyrtyshnikov, Zamarashkin. ∎

Given that cross-approximations exist for matrices having k-rank approximations the focus
now turns to the existence of low-rank approximations. Once that matrices arising in BEM are
proven to have low-rank approximations the issue of finding cross-approximations is addressed.

3.4.2 The Relation Between the Kernel, the Existence of Degenerate Approxi-
mants and Its Quality

In this section we explore the existence of degenerate kernel approximants for the BIE and
the BEM, bounds for the quality of this approximation and the implications to the quality of the
approximation made by the associated low-rank matrices. An important feature of the kernel
used in the determination of its capacity to be degenerated is its asymptotical smoothness,
which will be specified in the following definition. Let us consider for this the framework of a
BIE, where an integral kernel G is integrated twice on a boundary (d − 1)-dimensional surface
Γ ⊂ Rd.

Definition 26 (Asymptotically Smooth Kernel) A function G ∶ Γ × Rd → C satisfying
G(x, ⋅) ∈ C∞(Rd/{x}) for all x ∈ Γ is called assymptotically smooth in Γ with respect to y
if constants c and γ can be found such that for all x ∈ Γ and all multi-indexes α ∈ Nd0

∣∂αyG(x, y)∣ ≤ c p!γp
∣G(x, y)∣

∥x − y∥p2
for all y ∈ Rd/{x},

where p = ∣α∣.

24

In order to construct degenerate approximations of the kernel G let us consider a Taylor’s
expansion where possible. Being the only singularity of G at x = y, let us consider the Taylor’s
expansion of G in Γx × Γy, with Γx,Γy ⊂ Γ and dist(Γx,Γy) > 0.

Let ξx and ξy be the Chebyshev centers of Γx and Γy, i.e., the centers of the balls with
minimum radii ρx and ρy such that they contain Γx and Γy:

Γx ⊆ B(ξx, ρx) and Γy ⊆ B(ξy, ρy).

If G is asymptotically smooth in Γx with respect to y with constants γ and c, let us consider
the following Taylor’s series expansion of G for (x, y) ∈ Γx × Γy:

G(x, y) = ∑
∣α∣≥0

1

α!
(∂αyG(x, ξy)) (y − ξy)

α. (12)

Equation (12) shows that the kernelG is degenerate for separate domains, i.e., dist(Γx,Γy) >
0 . Truncating the Taylor’s series a degenerate approximation can be obtained:

Gp(x, y) = ∑
∣α∣<p

1

α!
(∂αyG(x, ξy)) (y − ξy)

α.

The degree k of this degenerate approximation of the kernel is at most the dimension of
the polynomials in d variables with degree at most p − 1, i.e., k ≤ pd.

Imposing a slightly stronger condition on the separation between Γx and Γy, i.e., η dist(ξy,Γx) ≥
ρy for η ∈ (0,1) instead of simply dist(Γx,Γy) > 0, an interesting bound for the quality of the
degenerate approximation can be found.

Lemma 8 (Precision of the Degenerate Kernel Approximation Using Taylor’s Series)
Let G be an asymptotically smooth kernel on Γx with respect to y in the sense of Definition
26 with constants c and γ. Let η ∈ (0,1) be chosen so that γ

√
dη < 1 . If be assume that

η dist(ξy,Γx) ≥ ρy then accuracy of the approximation using a truncated Taylor’s series is
bounded as

∣G(x, y) −Gp(x, y)∣ ≤ c
(γ

√
dη)p

1 − γ
√
dη

sup
x∈Γx

{∣G(x, ξy)∣} , for all (x, y) ∈ Γx × Γy.

25

Demonstration(Taken from Bebendorf. Page 122, [6])

∣G(x, y) −Gp(x, y)∣ =

RRRRRRRRRRR

∑
∣α∣≥p

1
α!

(∂αyG(x, ξy)) (y − ξy)
α
RRRRRRRRRRR

≤ ∑
∣α∣≥p

1
α!

∣∂αyG(x, ξy)∣ ∣(y − ξy)
α∣

≤ c ∣G(x, ξy)∣ ∑
∣α∣≥p

γ ∣α∣∣α∣!
α!∥x−ξy∥∣α∣2

∣(y − ξy)
α∣

≤ c ∣G(x, ξy)∣
∞
∑
l=p

(
γ

∥x−ξy∥2)
l
∑
∣α∣=l

(
l
α

) ∣(y − ξy)
α∣

≤ c ∣G(x, ξy)∣
∞
∑
l=p

(γ
√
d
∥x−ξy∥2
∥x−ξy∥2)

l

≤ c ∣G(x, ξy)∣
∞
∑
l=p

(γ
√
dη)

l

≤ c ∣G(x, ξy)∣
(γ
√
dη)p

1−γ
√
dη

≤ c
(γ
√
dη)p

1−γ
√
dη

sup
x∈Γx

{∣G(x, ξy)∣} .

∎

The previous theorem allows us to estimate a bound for the degree of degeneracy required
to guarantee a given accuracy ∣G(x, y) −Gp(x, y)∣ ≤ ε using Taylor’s expansions.

Let s = sup
x∈Γx

{∣G(x, ξy)∣}, then,

ε = c s
(γ

√
dη)p

1 − γ
√
dη
⇒ log ε = p log(γ

√
dη) + log(

c s

1 − γ
√
dη

)

k ≤ pd ⇒ k ≤

⎛
⎜
⎜
⎜
⎝

log (
ε(1−γ

√
dη)

c s)

log(γ
√
dη)

⎞
⎟
⎟
⎟
⎠

d

= (logγ
√
dη (

ε(1 − γ
√
dη)

c s
))

d

(13)

Remark 6 (Geometrical Admissibility Condition and Taylor’s Expansions) If G is
asymptotically smooth with respect to both variables then the following condition suffices to
assure the domain separation hypothesis of Lemma 8:

min{ρx, ρy} ≤ η dist(Γx,Γy).

This condition is used in the construction of block-cluster trees as seen in the previous
section. Once an integral kernel can be proven to be asymptotically smooth with constant γ,
η ∈ (0,1) must be chosen with the constraint η

√
dγ < 1.

Remark 7 (On the Optimality of the Bound for the Degeneracy) The bound (13) is
not optimal in general but it is independent from the algebraic structure of the kernel function; it
relies only on its asymptotical smoothness and on the integration regions through η. Depending
on the particular case better bounds can be can be obtained, such as, e.g., when using the
multipole expansion in the case of a Coulomb-type kernel G(x, y) = ∥x − y∥−1.

26

Remark 8 (Degeneracy Degree / Rank of the Approximation for a Given Accuracy)
A key observation is that Lemma 8 assures, as shown by equation (13), that for a given
approximation error ε there exists a degenerate kernel and a bounded degeneracy degree k
≲ ∣ log ε∣d that allows compliance with the specified error.

Let us now explore how the accuracy of the kernel approximant affects the accuracy of the
matrices that arise in the context of the mentioned framework of the Galerkin discretization
described in the first chapter.

Theorem 8 (Matrix Approximation Error Using Approximate Degenerate Kernels)
Let A ∈ Cm×n be the matrix containing the pairwise interactions of the basis functions indexed
by the index sets I = {1,2...m} and J = {1,2...n}, as seen by the bilinear operator of the
variational formulation used in a Galerkin discretization for a boundary integral equation,
and let the kernel G of the integral equation be asymptotically smooth for both variables with
constants c and γ. Let t × s ⊆ I × J be a block-cluster for the index sets I and J such that
min{ρx, ρy} ≤ η dist(Ωt,Ωs) with a constant η ∈ (0,1) chosen so that γ

√
dη < 1 and let G̃ be a

degenerate kernel for (x, y) ∈ Ωt ×Ωs. If it can be assured that ∣G(x, y) − G̃(x, y)∣ ≤ ε, then the
sub-matrix Ab associated to the block-cluster b = t × s, and the matrix Ãb computed using G̃,
comply with the following error estimates:

∣abij − ãbij ∣ ≤ ε∥ϕi∥L1(Γh)∥ϕj∥L1(Γh) for i ∈ t and j ∈ s,

and C > 0 such that ∥Ab − Ãb∥F ≤ Cε,

where C =
√

∣t∣ ⋅ ∣s∣ (max
i∈I∪J

{∥ϕi∥L1(Γh)})
2

and ϕi is basis function.

DemonstrationTaken from Bebendorf, page 135 [6].

∣abij − ãbij ∣ = ∣ ∫
Ωt×Ωs

(G(x, y) − G̃(x, y))ϕi(x)ϕj(y)dµ(x)dµ(y)∣

≤ ∫
Ωt×Ωs

∣G(x, y) − G̃(x, y)∣ ∣ϕi(x)∣ ∣ϕj(y)∣dµ(x)dµ(y)

≤ ε∥ϕi∥L1(Γh)∥ϕj∥L1(Γh)

The second estimates is evident from the definition of the Frobenius norm and from the first
estimate. ∎

3.4.3 Cross-Aproximation Methods

In the context of Galerkin discretizations of BIE, the bounds provided by the application
of Lemma 8 and Theorem 8 assure us that given an accuracy ε there exists a degenerate kernel
and a degree of degeneracy k ≲ ∣ log ε∣d such that kernel can be approximated with the specified
accuracy. Given an admissible block-cluster b, as for an approximation Z̃b of Zb such that
∥Zb − Z̃b∥F ≤ ε, its existence can be assured if the integral kernel can be approximated with
an accuracy of ε/C, where the constant C is the one from Theorem 8. If the block-cluster is
admissible, and if the integral kernel is asymptotically smooth, then there exists a degenerate
kernel approximation with degeneracy degree k with a bound, as shown in equation (13), of
the type k ≲ ∣ log ε∣d.

The idea behind cross-approximation methods is to perform a rank-revealing decomposition
of the matrix Zb, known to have a low-rank approximant, in order to construct consecutive
approximations Sk growing in rank and diminishing the quantity ∥Zb − Sk∥F in each step. A

27

cross-approximation method can be set to construct consecutive approximants up to a preset
maximum rank kmax or until an accuracy ε is met, increasing the rank k adaptively up to
a number kmax(ε), case in which the cross-approximation method is called Adaptive Cross-
Approximation (ACA) method.

Starting from a residue matrix R0 = Zb, the cross-approximation algorithms diminish the
rank of R0 to obtain a second residue matrix R1 and so forth obtaining new residue matrices
such that rank(Rk+1) ≤ rank(Rk). The difference between the original matrix and the residue
is the approximant: Zb = Sk +Rk. To diminish the rank in each step a column jk and a row ik
are chosen for elimination:

Rk+1 = Rk − ((Rk)ik,jk)
−1

(Rk)1..m, jk(Rk)ik,1..n. (14)

The matrices that are subtracted to Rk in all steps account for the difference Z −Rk and
are gathered in the approximant Sk = Z −Rk. The approximant matrix Skmax is then available
as:

Skmax =
kmax−1

∑
k=0

((Rk)ik,jk)
−1

(Rk)1..m, jk(Rk)ik,1..n

As a sum of kmax unitary rank matrices, the matrix Skmax is of rank at most kmax.

An important observation is that the construction of Sk can be performed without using all
the elements of the matrices Rk of the previous steps. It is possible to store, for the matrices Rk,
only the rows and columns that undergo change during the algorithm preserving a complexity
that behaves asymptotically also as O(k2(m + n)) if Zb ∈ Cm×n.

Let k = 1, Λ = ∅ and Λc = {1,2, ...,m};
while stop criterion not met do

Choose a row ik ∈ Λc;
ṽk = (Zb)ik,1∶n
for l = 1, ..., (k − 1) do

ṽk = ṽk − (ul)ik vl;

end
Λ = Λ ∪ {ik} and Λc = Λc/{ik};
if ṽk does not vanish then

Choose a column jk ∈ {1,2, ..., n};
vk = (ṽk)

−1
j ṽk;

uk = (Zb)1∶m,jk ;

for l = 0, ..., (k − 1) do
uk = uk − (vl)jkul;

end
k=k+1;

end

end
Algorithm 1: Structure of cross-approximation algorithms.

The Choice of the Pivots

It is easy to see that the procedure of cross-approximations algorithms produce residue
matrices Rk+1 eliminating selected rows and columns of Rk marked by the pivots. The choice
of the the consecutive row pivots ik and column pivots jk is made so that the reduction in rank
maximizes the reduction in the norm of the residue matrix ∥Rk∥F = ∥Zb−Sk∥F . An ideal choice
is the pivot pair (ik, jk) such that Rkik,jk is the maximal entry in modulus. The inconvenient

28

of this choice, known as full pivoting, is that it involves a O(mn) complexity. An heuristic
solution is to choose a random fixed column j′, choose in each step ik = argmaxi∣Rki,j′ ∣ and
then jk = argmaxj ∣Rkik,j ∣. This new method, known as partial pivoting, results in a O(m + n)
complexity and requires that the a priori selected column is always updated.

Remark 9 (Partial Pivoting and Double Layer Potentials) Certain boundary geometries
can produce matrices that are not full when the kernel of a BIE is a double layer potential. In
fact, in an cuboid box with adjacent faces formed by normal planes, a double layer potential can
produce null blocks in the matrix associated to a block-cluster. If the column j′ chosen a priori
has null entries, the corresponding rows will not be chosen by the partial pivoting algorithm.
To remedy this shortcoming of the partial pivoting algorithm it must be complemented with a
second line of discernment for when no pivot rows ik can be chosen selecting the maximum
entry from the arbitrary row but the desired rank hasn’t been met, in the case of CA algorithms,
of the specified accuracy hasn’t been achieved, in the case of ACA algorithms.

The Stop Criterion

The algorithm can be stopped either when a maximum rank kmax has been attained or
when the approximant Sk is close enough to the matrix Z: ∥Zb −Sk∥F /∥Zb∥F = ∥Rk∥F /∥Zb∥ ≤ ε
for a specified tolerance ε resulting in kmax(ε) steps. While equation (13) shows the existence
of a k-rank approximant of Zb for a prescribed accuracy ε, this error could be possibly met
with matrix whose rank was lower than k. In fact, it was mentioned that depending on the
problem, bounds better than (13) could be obtained. It could then be desirable to test the
relative error ∥Rk∥F /∥Zb∥F as rank(Rk) decreases, using an ACA method in hopes of reducing
the number of required steps and thus the rank of the approximation.

Unfortunately, computing ∥Rk∥F and ∥Zb∥F defeats the purpose of the cross-approximation
methods in the context of a fast method for the boundary integral equation such as the
hierarchical matrix method; on the one hand because it would require the knowledge of the
matrix elements of Zb and because it would imply a complexity of order O(mn). Instead of
computing the matrix norm of Zb and Rk an heuristically approach is commonly used founded
in the following assumption: the cross-approximation algorithm monotonically diminishes the
quantity ∥Zb − Sk∥F = ∥Rk∥F . In fact it is easy to see that after min{m,n} steps the residue
matrix will have zero norm. This assumption, although not true in general, is a common
element in the current ACA methods, as the following lemmas show.

Lemma 9 (ACA Relative Error) Let Zb ∈ Cm×n be a matrix to be decomposed as Zb =

Sk +Rk using a cross-approximation algorithm of the kind of Algorithm 1. Let us suppose that
there exists a number δ ∈ (0,1) such that for every k we have that ∥Rk+1∥F ≤ δ∥Rk+1∥F . Then,
the following condition is enough to assure that ∥Zb − Sk∥F /∥Zb∥F ≤ ε:

1

∣(Rk)ik,jk ∣
∥(Rk)1..m, jk∥2 ∥(Rk)ik,1..n∥2 ≤ (1 − δ)

ε

1 + ε
∥Sk∥F . (15)

Demonstration In a cross-approximation algorithm, once we have chosen the pivots ik and
jk for the step k, we know that the next residue matrix Rk+1 can be computed as stated in
equation (14), which implies that

∥Rk∥F ≤ ∥Rk+1∥F +
1

∣(Rk)ik,jk ∣
∥(Rk)1..m, jk(Rk)ik,1..n∥F .

Assuming that there exists a number δ ∈ (0,1) such that for every k we have that ∥Rk+1∥F ≤

δ∥Rk+1∥F , and considering that ∥(Rk)1..m, jk(Rk)ik,1..n∥F ≤ ∥(Rk)1..m, jk∥2 ∥(Rk)ik,1..n∥2, the

29

previous statement implies that

∥Rk∥F ≤
1

1 − δ
∥(Rk)1..m, jk∥2 ∥(Rk)ik,1..n∥2.

If equation (15) holds, then

∣ Rk∥F ≤
ε

1 + ε
∥Sk∥F .

Together with the fact that ∥Sk∥F ≤ ∥Zb∥F + ∥Rk∥F this yields that

∥Rk∥F ≤ ε∥Zb∥F ,

that is the desired results. ∎

Remark 10 (Usefulness and Limitations of the Lemma 9) Condition (15) can be com-
puted with complexity in the order of O(k2(m+n)) (being Sk in Cm×nk) and doesn’t need previous
knowledge of all the entries of neither Rk nor Zb. However, the hypothesis of Lemma 9, i.e.,
that there exists a number δ ∈ (0,1) such that for every k we have that ∥Rk+1∥F ≤ δ∥Rk+1∥F , is
a strong assumption and it cannot be proved in general. However, in practice, it is a sufficiently
good condition, specially when applied with additional heuristic conditions to ignore the first
realizations of the inequality. For a further discussion on the usefulness and the limitations of
the application of the results of the lemma, the reader is referred to [25].

While the hypotheses of Lemma 9 can be proven for some case, it is a non-trivial task.
Often, an heuristic alternative is chosen: to check to convergence of the increment of the
sequence. Since we known that ∥Rk∥F eventually vanishes to zero, an alternative stop criterion
is to check the convergence of the increment of the sequence considering that the difference
between Rk+1 and Rk is a unitary rank matrix:

∥Rk+1 −Rk∥F = ∥ ((Rk)ik,jk)
−1

(Rk)1..m, jk(Rk)ik,1..n∥F ≤
1

∣(Rk)ik,jk ∣
∥(Rk)1..m, jk∥2∥(Rk)ik,1..n∥2.

The alternative stop criterion for a specified relative tolerance ε would then be:

Stop when
∣(R0)i0,j0 ∣

∣(Rk)ik,jk ∣

∥(Rk)1..m, jk∥2∥(Rk)ik,1..n∥2

∥(R0)1..m, j0∥2∥(R0)i0,1..n∥2
≤ ε. (16)

This heuristic criterion is widely used (prominent examples can be seen in [33], and a wide
collection of numerical results in [10], Chapter 4) even though it can be proven to fail in assuring
a maximum error of ε in the matrix approximant (an example of this can be seen in [25]). It
is common to use this criterion with additional heuristic strategies.

30

{1, 2, 3, ..., n}

n
1, ...,

n

2

o

n
1, ...,

n

4

o nn

4
+ 1, ...,

n

2

o ⇢
n

2
+ 1, ...,

3n

4

� ⇢
3n

4
+ 1, ..., n

�

nn

2
+ 1, ..., n

o

Figure 3: First three levels of the cluster tree

4 Example Computations

4.1 An Elemental Case

This section exemplifies some of the concepts developed in the previous chapters through
a simple example. Let us consider the following integral equation for a known function f ∶

[0,1]→ R:

1

∫

0

log (∣x − y∣)u(y)dy = f(x)

A standard discretization scheme is Galerkin’s method where we solve the integral equation
projected onto the n-dimensional space Vn = span{ϕ1, ϕ2, ...ϕn}:

n

∑
j=1

1

∫

0

1

∫

0

log (∣x − y∣)ujϕj(x)ϕi(y)dxdy =

1

∫

0

f(x)ϕi(x)dx.

Let us split the [0,1] interval in n = 2p intervals for p sufficiently large and let us considerate
a P0 Lagrange basis to span the space Vn. The P0 basis function are

ϕi(x) = {
1 if (i − 1)/n < x < i/n
0 otherwise

Using these basis functions the elements of the system matrix can be computed as

Aij =

i
n

∫
i−1
n

j
n

∫
j−1
n

log (∣x − y∣)dxdy.

The index set for the basis of Vn is I = {1,2, ..., n}. Selecting a minimal size nmin for a
cluster we can construct a cluster-tree TI dividing in two each cluster/node of the tree of root
I, provided that p is large enough. Figure 3 shows the first 3 levels (level 0, 1 and 2) of the
cluster tree.

Following Definition 18 the block-cluster tree can be constructed as it is shown in Figure 4
for the first 3 levels (level 0, 1 and 2).

At level 2 of the block-cluster tree the first block-clusters susceptible of respecting a
condition of geometrical admissibility appear. Let us focus in block-cluster b = {1, ..., n/4} ×

31

{1, 2, ..., n} ⇥ {1, 2, ..., n}

n
1, ...,

n

2

o
⇥

nn

2
+ 1, ..., n

on
1, ...,

n

2

o
⇥
n

1, ...,
n

2

o nn

2
+ 1, ..., n

o
⇥
n

1, ...,
n

2

o nn

2
+ 1, ..., n

o
⇥
nn

2
+ 1, ..., n

o

n 1,
..
.,

n 4

o
⇥
n 1,

..
.,

n 4

o

n 1,
..
.,

n 4

o
⇥
n

n 4
+

1
,.

..
,
n 2

o

n
n 4

+
1
,.

..
,
n 2

o
⇥

n 1,
..
.,

n 4

o

n
n 4

+
1
,.

..
,
n 2

o
⇥
n

n 4
+

1
,.

..
,
n 2

o

n 1,
..
.,

n 4

o
⇥

⇢
n 2

+
1
,.

..
,
3n 4

�

n 1,
..
.,

n 4

o
⇥

⇢
3n 4

+
1
,.

..
,n

�

n
n 4

+
1
,.

..
,
n 2

o
⇥
⇢

n 2
+

1
,.

..
,
3
n 4

�

n
n 4

+
1
,.

..
,
n 2

o
⇥

⇢
3
n 4

+
1
,.

..
,n

�

⇢
n 2

+
1
,.

..
,
3
n 4

�
⇥

n 1
,.

..
,
n 4

o

⇢
n 2

+
1
,.

..
,
3n 4

�
⇥

n
n 4

+
1
,.

..
,
n 2

o

⇢
3
n 4

+
1
,.

..
,n

�
⇥
n 1,

..
.,

n 4

o

⇢
3n 4

+
1
,.

..
,n

�
⇥
n

n 4
+

1
,.

..
,
n 2

o

⇢
3n 4

+
1
,.

..
,n

�
⇥

⇢
n 2

+
1
,.

..
,
3n 4

�

⇢
3
n 4

+
1
,.

..
,n

�
⇥
⇢

3n 4
+

1
,.

..
,n

�

⇢
n 2

+
1
,.

..
,
3
n 4

�
⇥

⇢
3n 4

+
1
,.

..
,n

�

⇢
n 2

+
1
,.

..
,
3n 4

�
⇥
⇢

n 2
+

1
,.

..
,
3
n 4

�

Figure 4: First three levels of the block-cluster tree

{3n/4 + 1, ..., n}. This block-cluster can comply with geometrical admissibility conditions for
η ≥ 1/2, being among the first apparitions of sub-matrices selected to be approximated by a
low-rank matrix.

The entries of the sub-matrix corresponding to the block-cluster b = {1, ..., n/4}×{3n/4 + 1, ..., n}
can be computed as also its singular value structure. Let us consider the particular case of p = 9
and n = 29 = 512. Figure 6 shows the singular value structure of the sub-matrix Ab ∈ C128×128

corresponding to the block-cluster b = {1, ...,128} × {385, ...,512}.

As revealed by the singular value structure, the sub-matrix Ab is indeed suitable to be
approximated by a low-rank matrix. Theorem 6 assures the existence of an approximation of
consecutively growing rank that drastically lowers the difference between the matrix Ab and
its low-rank approximate for the first 6 iterations. The procedure of Theorem 6 is, however,
too expensive; it is of order O(n3). One of the described cross-approximation methods must
be used.

For any geometrically admissible block-cluster b = t×s the asymptotical smoothness can be
checked since all geometrically admissible block-cluster comply with dist(Ωt,Ωs) > 0. It can
be easily checked that the kernel complies with the definition of asymptotical smoothness:

∣
∂n

∂xn
log ∣x − y∣∣ = ∣

∂n

∂yn
log ∣x − y∣∣ =

(n − 1)!

∣x − y∣n
≤

n!

∣x − y∣n
≤ cγn

n! ∣log ∣x − y∣∣

∣x − y∣n
,

with γ = 1 and c = ∣ log(dist(Ωt,Ωs))∣
−1. This means that, for our chosen block-cluster

b = {1, ...,128} × {385, ...,512}, the choice of η is to be made such that 1/2 ≤ η < 1, for

η ∈ [1/2,1)⇒ b = {1, ...,128} × {385, ...,512} is geometrically admissible.

Being the the block-cluster b geometrically admissible, and being the kernel asymptotically
smooth, it is assured that a lesser-rank approximation exists. In the following, a partial pivot
CA and a full pivot cross-approximation are shown in Figure 7, illustrating the performance of
the CA methods described in the previous chapter.

Finally, the results of a faster method based on a random choice of row pivots but an
absolute-value-maximizing choice of column pivots, a semi-random pivoting CA, are shown in
Figure 8.

32

n
1, ...,

n

4

o nn

4
+ 1, ...,

n

2

o ⇢
n

2
+ 1, ...,

3n

4

� ⇢
3n

4
+ 1, ..., n

�

n 1,
..
.,

n 4

o
n

n 4
+

1
,.

..
,
n 2

o
⇢

n 2
+

1
,.

..
,
3n 4

�
⇢

3
n 4

+
1
,.

..
,n

�

Figure 5: Sub-matrices associated to the partition made of the block-cluster in T
(2)
I×I .

0 20 40 60 80 100 120
10−18

10−16

10−14

10−12

10−10

10−8

10−6

10−4

10−2

k

σ
k

Figure 6: Singular value structure of the matrix.

0 1 2 3 4 5 6 7 8
10−16

10−14

10−12

10−10

10−8

10−6

10−4

10−2

Rank of the Approximation (k)

Ap
pr

ox
im

at
io

n
||A
−S

k|| F

Partial Pivot CA, fixed col=1
Partial Pivot CA, fixed col=30
Partial Pivot CA, fixed col=60
Partial Pivot CA, fixed col=90
Partial Pivot CA, fixed col=120
Full Pivot CA
Singular Values

Figure 7: Comparison of the singular value structure with the full pivot CA and partial pivot
CA using several fixed columns across the matrix.

33

0 1 2 3 4 5 6 7 8
10−16

10−14

10−12

10−10

10−8

10−6

10−4

10−2

Rank of the Approximation (k)

Ap
pr

ox
im

at
io

n
||

A
−

S k ||
F

S. Values
Random Run 1
Random Run 2
Random Run 3
Random Run 4
Random Run 5
Random Run 6
Random Run 7
Random Run 8
Random Run 9
Random Run 10
Random Run 11
Random Run 12
Random Run 13
Random Run 14

Figure 8: Comparison of the singular value structure with several realizations of semi-random
pivoting CA.

34

4.2 Cross-Approximation for the BEM for the Electric Field Integral Equa-
tion

4.2.1 BEM for the Perfect Electric Conductor

In the following we consider the boundary integral equation for the scattering of an electro-
magnetic wave by a perfect electric conductor. Let Ωint be a perfect electric conductor object
(PEC) of boundary Γ immersed in open space Ωext. Let n̂ be the unit vector normal to Γ
pointing towards Ωext. In the absence of source electric or magnetic charges or currents, a
time-harmonic electromagnetic field (E,H) in an isotropic conducting medium is governed by
the Maxwell’s equations

⎧⎪⎪⎪
⎨
⎪⎪⎪⎩

iωεE + curlH = 0,

−iωµH + curlE = 0.
(17)

In equation (17) ω = 2πf is the pulsation at a given frequency f , ε and µ are the complex
electrical permittivity and the magnetic permeability, and σ is the electric conductivity of the
medium. The magnetic permeability µ = µrµ0 depends on the relative magnetic permeability
µr ≥ 1 of the medium and that of the vacuum µ0. The complex electrical permittivity ε =

εrε0 + iσ/ω depends on the relative electrical permittivity εr ≥ 1, on the electrical permittivity
of the vacuum ε0 and in the conductivity σ ≥ 0 of the medium at the given pulsation ω
(at time-harmonic regimes the conductivity accounts for the dielectric losses and for those
associated to the induced electrical currents). In equation (17) it is implicit the time convention
E(x, t) =R (E(x)e−iωt) andH(x, t) =R (H(x)e−iωt). Inside a perfect electric conductor (PEC)
medium the field E and H are zero as the result of the limits process of taking the conductivity
σ towards infinity.

The tangential components of the electric and magnetic fields remain continuous across a
surface Γ of discontinuity that separates two regions where ε or µ are continuous. The boundary
conditions for the electric and magnetic fields can be stated, for a boundary Γ that follows the
discontinuity of ε or µ, as

[E × n̂]Γ = 0 and [H × n̂]Γ = 0, (18)

where []Γ is the jump across Γ and n̂ is the unitary normal to Γ.

Let us consider the problem of computing the electromagnetic field (E,H) scattered by
a PEC object Ωint immersed in an infinity vacuum Ωext, and illuminated by an incident
electromagnetic plane wave (Einc,Hinc).

Being a PEC (E = 0 inside Ωint), and as a conclusion from equation (18), the trace of the
total electric field E+Einc complies with ((E +Einc) × n̂) ∣ext = 0. If the incident electromagnetic
wave (Einc,Hinc) is a plane wave that satisfies the Maxwell’s equations (17) then the satisfaction
of those equations by the total field yields the partial differential equation problem for the
scattered electromagnetic field:

⎧⎪⎪⎪⎪⎪⎪⎪⎪
⎨
⎪⎪⎪⎪⎪⎪⎪⎪⎩

iωεE + curlH = 0 in Ωext,

−iωµH + curlE = 0 in Ωext,

(E × n̂)∣ext = −Einc × n̂ in Γ.

(19)

Let us extend the values of the electromagnetic field (E,H) into Ωint by those solution to
an associated problem:

35

⎧⎪⎪⎪⎪⎪⎪⎪⎪
⎨
⎪⎪⎪⎪⎪⎪⎪⎪⎩

iωεE + curlH = 0 in Ωint,

−iωµH + curlE = 0 in Ωint,

(E × n̂∣inc = −Einc × n̂ in Γ.

(20)

Let us also assume that the scattered electromagnetic field respects the Silver-Müller
radiation condition, i.e., there exist values C > 0 and R > 0 such that

(
√
εE −

√
µH ×

x

∥x∥2
) ≤

C

∥x∥2
2

, ∀∥x∥2 > R.

If we denote the jump of the tangential fields in Γ as

j = (H × n̂)∣int − (H × n̂)∣ext and m = (E × n̂)∣int − (E × n̂)∣ext,

then it can be proved (Theorem 5.5.1, page 234 [26]), that the scattered electromagnetic
field (E,H) can be written, for x ∉ Γ as

E(x) = iωµ ∫
Γ

G(x, y)j(y)dΓ(y) + i
ωε∇ ∫

Γ

G(x, y)divΓj(y)dΓ(y) + curl ∫
Γ

G(x, y)m(y)dΓ(y),

H(x) = −iωε ∫
Γ

G(x, y)m(y)dΓ(y) − i
ωµ∇ ∫

Γ

G(x, y)divΓm(y)dΓ(y) + curl ∫
Γ

G(x, y)j(y)dΓ(y),

(21)

where G(x, y) is the Green’s function for the Helmholtz’s equation. It can also be proved
that, for x ∈ Γ,

(E × n̂)∣ext(x) = −
m(x)

2 + ∫
Γ

(G
∂n̂x

(x, y)m(y) −∇xG(x, y)(m(y) ⋅ (n̂x − n̂y)))dΓ(y)

+iωµ ∫
Γ

G(x, y)j(y) × n̂xdΓ(y)

+ i
ωε ∫

Γ

((∇xG(x, y) × (n̂x − n̂y))divΓj(y) +G(x, y)
ÐÐ→
curlΓdivΓj(y))dΓ(y).

(22)

Considering that m = 0, the scattered field can be computed using equation (21) from j,
which can be determined solving the integral equation arising from equation (22):

−(Einc × n̂)(x) = +iωµ ∫
Γ

G(x, y)j(y) × n̂xdΓ(y)

+ i
ωε ∫

Γ

((∇xG(x, y) × (n̂x − n̂y))divΓj(y) +G(x, y)
ÐÐ→
curlΓdivΓj(y))dΓ(y).

(23)

It can be proven (Theorem 5.6.2, page 247 [26]), provided that µεω2 is not an eigenvalue
of the associated problem, that the integral equation (23) admits the following variational
formulation:

36

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪
⎨
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

For Einc × n̂ ∈H
−1/2
curl (Γ), find j ∈H

−1/2
div (Γ) such that ∀jt ∈H

−1/2
div (Γ),

− ∫
Γ

(Einc(x) ⋅ j
t(x))dΓ(x) = − i

ωε ∫
Γ×Γ

G(x, y)divΓj(y)divΓj
t(x)dΓ(y)dΓ(x)

+iωµ ∫
Γ×Γ

G(x, y)(j(y) ⋅ jt(x))dΓ(y)dΓ(x),

where

H
−1/2
curl (Γ) = {E ∈H−1/2

(Γ), rotΓE ∈H−1/2
(Γ)}

and

H
−1/2
div (Γ) = {E ∈H−1/2

(Γ), divΓE ∈H−1/2
(Γ)} .

To discretize the problem we consider a piecewise triangular mesh Γh approximation of Γ,
where h indexes the longest edge of the mesh. We take as basis functions the Rao-Wilton-
Glisson (RWG) functions associated to each edge of the triangular mesh. For each edge we
arbitrarily define a direction of flow, flowing from one side, triangle T+, to the other side of the
edge, triangle T −. Let S+ be the vertex of triangle T + that it’s not over the common edge, and
similarly let S− be the vertex of triangle T− that it’s not over the common edge. The RWG
basis function associated to an edge n, of length ln, of the triangular mesh Γh is defined as

jn(x) =

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪
⎨
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

ln
2area(T+n)

(x − S+n) if x ∈ T+n ,

− ln
2area(T−n)

(x − S−n) if x ∈ T −n ,

0 otherwise.

The variational formulation can be then discretized expressing the solution as

j(x) =
Nh

∑
n=1

αnjn(x), for x ∈ Γh,

where Nh is the number of edges of the triangular mesh Γh. The discretized formulation is
put into a system of linear equations:

ZI = V,

where

I = (α1, α2, ..., αNh)
T ,

Vi = −∫
Γh

(Einc(x) ⋅ ji(x))dΓh(x),

and

Zij = − i
ωε ∫

Γh×Γh

G(x, y)divΓjj(y)divΓji(x)dΓh(y)dΓh(x)

+iωµ ∫
Γh×Γh

G(x, y)(jj(y) ⋅ ji(x))dΓh(y)dΓh(x).

37

distance	

Figure 9: Diagram (top) and mesh (bottom) of the case study, consisting in two unit balls
separated by a variable distance.

4.2.2 Cross-Approximation for Separated Objects

Using the hierarchical matrix approach discussed in the previous chapter the integration
domain could be divided into regions where cross-approximation techniques could be then
applied. In this section, we will consider a slightly simpler case, that of separated scatterer
objects. Let us assume that we have two separated scatterer objects and that their surfaces
have been discretized in triangular meshes. Let us assume that the mesh of the first object
has N1 edges and that the mesh of the second object has N2 edges. The system matrix of the
associated BEM could be then represented as

Z =
⎛
⎜
⎝

Z11 Z12

Z21 Z22

⎞
⎟
⎠
,

where Z11 ∈ CN1×N1 , Z21 ∈ CN1×N2 , Z21 ∈ CN2×N1 and Z2 ∈ CN2×N2 . Since the matrix Z is
symmetric, we also know that Z11 = Z

T
11, Z22 = Z

T
22 and Z12 = Z

T
21. When introducing a second

object in a scattering simulation, the added complexity is more than that associated to the
matrix of the second object, i.e., Z22, since it also incorporates the reactions between the basis
functions on each object, i.e., matrices Z12 and Z21.

Let us consider two PEC balls of unitary radius, centers separated by a variable distance
and floating in the vacuum illuminated with a 500MHz incident plane wave. Let each ball have
710 edges (N1 = N2 = 710) of average length of 10cm. Figure 9 shows the considered case.

The matrix Z12 (and thus Z21) is a good candidate to be approximated by cross-approximation,
allowing for a complexity close the sum of the complexities associated to each separated ball.
Figure 10 shows the evolution of a low-rank approximation computed with a full pivoting cross-
approximation algorithm for different separations between the metallic balls. It can be seen
in the figure how larger distances quickly allow for improved approximations in the sense of
achieving a smaller approximation error with lesser ranks.

Let suppose that for a given application, it is enough to approximate Z12, in this particular
case, with an absolute error of at most 10−2. This means that depending on the distance
(between the ones chosen for our example) the rank of the approximant could be between 2
and 25. This means that the number of elements to store could range from 710(710+1)+2(710+
710) = 507650 to 710(710 + 1) + 25(710 + 710) = 540310. Considering that no approximation
at all yields a number of elements to store equal to 1420(1420 + 1)/2 = 1008910, the cross-

38

0 5 10 15 20 25 30 35 40 45 50
10−8

10−7

10−6

10−5

10−4

10−3

10−2

10−1

Rank of the Approximation (k)

Ap
pr

ox
im

at
io

n
||A
−S

k|| F

2.5m
4m
5.5m
7m
8.5m
10m

Figure 10: Error evolution of a cross-approximation of Z12 computed with a full pivoting cross-
approximation algorithm for different separations between the unitary radii metallic balls.

approximation approach (even in this case where no hierarchical structures were used) means
a cut in memory requirement between 46% and 49%. Even for the simple approach of using
cross-approximation only for the sub-matrices of the interactions between the different objects
in a scattering problem (without a hierarchical approach) implies a significant advantage.
Applications to this simple case are also of interest, e.g., as in the case of a multi-static
scattering by an object surrounded by multiple emitting/receiving antennas (air-tracking with
radar networks, microwave medical imaging, security scanning with synthetic antennas, etc)
or in the case of multiple inclusions (underground imaging of land mines in soils with other
objects, photonic crystals, etc). To further improve the complexity below that of the sum of
the complexity of the scattering problems associated to each separate object, the geometric
division and hierarchical matrix approach (or other such as FMM, Panel Clustering, etc) can
be used.

39

5 Historical Review

This last section offers a short description of the historical development of the methods and
techniques described in this report, which are divided in four main parts: the apparition of the
fast methods, the formalization of the hierarchical structures, the hierarchical matrices and the
development of the cross-approximation techniques.

5.1 The Acceleration of Pairwise Interactions and the Fast Multipole Method

The ideas behind the acceleration of the resolution of the discretized integral equation
are firstly related to the pairwise nature of the operation of a bilinear operator over a finite-
dimensional basis spanning a discrete sub-space considered for a Galerkin discretization. In
this sense the first advances in the acceleration and compression (in terms of memory re-
quirements) can be traced back to the landmark Rokhlin’s article of 1985: Rapid solution
of integral equations of classical potential theory [29]. In this work a method to compute
the mutual interactions of N elements with less than O(N2) complexity is proposed. This
methods introduces the concept of local interactions of a given element, from which other key
concepts spring such as degenerate integral kernel approximations. Using local interactions
and multipolar expansions based on the Gegenbauer’s Addition Theorem the overall number
of computations is effectively reduced. This idea proved to be fruitful for the computation
for particle-like elements, first developed by Greengard and Rokhlin in 1987 [15], and it soon
showed its advantages in the pairwise interactions used in collocation, Galerkin and Nystrom
methods for the integral equations. The earliest developments in the field can be traced back to
Greengard in 1988 [16] and many applications have been developed ever since for the boundary
integral equation.

The application of this method based on a multipolar expansion of the kernel of a boundary
integral operator is known as the Fast Multipole Method (FMM), and it achieves less-than-
quadratic computational complexity provided that a geometrical partition of the integration
domain has been done to exploit local interactions and provided that the kernel can be
approximated by a multipolar expansion.

A comprehensive review on the history and application of the FMM can be consulted in [27].

5.2 The Panel Clustering Method and the Development of the Hierarchical
Structures

A different type of method for the acceleration and compression of the boundary integral
equations methods appeared shortly after the birth of the FMM. It was proposed in 1986 by
Hackbusch and Nowak and it is known as the panel clustering method [20]. It also relies in the
approximation of the kernel of the integral equations exploiting the computations for the local
interactions by based on polynomial interpolation rather than in multipole expansion. The
kernel of the integral operator is approximated by tensorized Lagrange polynomials over grids
of Chebyshev points in axiparallel boxes dividing the integration domain. Efficient uses for the
boundary integral equations were reported as early as 1989 also by Hackbusch and Nowak for
the collocation method [21], and its use with the Galerkin method was developed in Sauter’s
doctoral thesis under Hackbusch supervision in 1992 [30] [22]. The use of axiparallel boxes
developed into the formalization of a hierarchical geometrical subdivision of the integration
domain and structures for its representation and use in acceleration and compression of the
matrices arising in the discretization of integral equations. The goal for these structures and
their formalizations was to provide efficient means to compute matrix-vector multiplications
(used in iterative solvers) exploiting degenerate expansions of the kernel (in this case polyno-
mial). Precedent of this direction of development towards hierarchical structures is found in
1986 given by Barnes and Hut in the computation of forces for a group of elements scattered

40

in different positions [2]. A use directly related to integration was used in 1990 by Brandt and
Lubrechet in the computation of integral transforms [8] much in the spirit of the panel clustering
method but with emphasis on the structure of the matrix and the geometrical division. Some
final developments before the introduction of what is now known as hierarchical matrices was
done by Brandt and Venner in 1998 specifically for the boundary integral equations [9].

5.3 The Hierarchical Matrix

The hierarchical matrix is a formalization of the sub-matrix structure of a matrix and
it is linked to the geometry of the problem from where it arises. The construction of the
sub-matrix structure is determined by criteria related to the exploitable features arising from
geometrical characteristics. In the case of the discretization of boundary integral equations
these criteria relate to distance between integration sub-domains and their sizes, allowing for
the approximation using degenerate kernels and thus resulting in low-rank matrices approxi-
mations for some of the sub-matrices of the hierarchical structure. The formalization of this
structure allows for the development of an algebraic structure for the set of sub-matrices linked
to a particular discretization problem, thus allowing matrix operations other than just the
matrix-vector multiplication as it is the case for the FMM and Panel Clustering methods. A
formalization of matrix summation, matrix-matrix multiplication and computation of matrix
norms for hierarchical matrices provides means to carry out more complex matrix operations
such as matrix factorizations and inversions. These approaches have been successfully used
to compute matrix pre-conditioners with less than quadratic complexity. Another interesting
but yet fairly unexplored field arises from the hierarchical matrix formalization, seeking to fit
hierarchical rank structures in a matrix without a priori information such as the one provided
by a related geometrical domain in the case of integral equations. A proper fit for a given
matrix within a type of hierarchical matrix structure could then be used to perform operations
in less than quadratic complexity. The first formalization of hierarchical matrices, denoted
as H-matrices, was given by Hackbusch in two articles in 1999 [17], setting the formalism for
the structure and its algebraic framework, and in 2000 [18] providing applications to problems
relating to multidimensional geometries and their uses in boundary integral methods. A wider
generalization, called H2-matrices, was also proposed in 2000 by Hackbusch, Khoromskij and
Sauter [19] capable of accounting for the exploitation made by FMM and Panel Clustering
methods of the multi-level information (geometrical sub-matrix nesting) besides the geometrical
features of the used subdomains. This feature, known as upward and downward pass in the
FMM and Panel Clustering algorithms is associated to a recompression of the sub-matrices
of a H2 using information on the nesting of the structure. The first application of this new
variant to boundary integral equations was provided by Hackbusch and Börm in 2004 [7]. The
first pre-conditioners computed from H-matrices for the BEM where shown by Bebendorf in
2005 [5].

5.4 Cross-Approximation Methods

A novel method, called skeleton-approximation, related to the degenerate kernel approxi-
mation but different in nature, and contemporary to the development of hierarchical matrices,
appeared in 1996 suggested by Tyrtyshnikov [32] and was formalized by Goreinov, Tyrtyshnikov
and Zamarashkin in 1997 [13]. This method can be seen as a reduced model problem for the
space of matrices spanned by a given number of unitary rank matrices; as such its origins can
be traced to the apparition of the reduced model theory in the mechanical community in the
late 1970s [1] [28].The method, later re-baptized as cross-approximation (CA), produced a low-
rank approximation of a matrix using only the matrix entries without prior knowledge of the
kernel function other than the fact that it accepted a degenerate approximant. An adaptive
version, the adaptive cross-approximation (ACA) method, was then proposed by Bebendorf in
2000 [4] using geometrical information of the associated problem to derive properties of the

41

rank-structure of the matrices to be approximated so to produce consecutive adaptive-rank
matrix approximating a given matrix up to a given error. The first uses of the ACA method
to the resolution of boundary integral equations are due to Bebendorf and Rjasanow in 2003
for the collocation method [3] and to Kurz, Rain and Rjasanow in 2002 for the 3D Galerkin
BEM [24]. The development of ACA methods for different BEM is an active field since then.
An early example of application to the BEM for the electromagnetic propagation was provided
by Zhao, Vouvakis and Lee in 2005 [33].

The key feature of the CA methods in their application to the BEM for the boundary
integral equations is that it can compute low-rank approximation of matrices up to a desired
error without the need of developing kernel expansions. The approximations can be computed
consulting only a few entries of the original matrix provided than it can be shown that
degenerate approximants for the kernel exist (this condition can be assured checking certain
smoothness conditions for the kernel). This feature allows for the re-utilization of existing BEM
code (often extensively tested) in the construction of fast methods with the aid of hierarchical
structures such as the H-matrices.

42

References

[1] B. O. Almroth, P. Stern, and F. A. Brogan. Automatic choice of global shape functions
in structural analysis. AIAA Journal, 16:525–528, May 1978.

[2] J. Barnes and P. Hut. A hierarchical O(n logn) force calculation algorithm. Nature,
(324):446–449, 1986.

[3] M. Bebendorf and S. Rjasanow. Adaptive low-rank approximation of collocation matrices.
Computing, 70(1):1–24, 2003.

[4] Mario Bebendorf. Approximation of boundary element matrices. Numerical Mathematics,
86(4):565–589, 2000.

[5] Mario Bebendorf. Hierarchical lu decomposition based on preconditioners for bem.
Computing, 74:225–247, 2005.

[6] Mario Bebendorf. Hierarchical Matrices. Lecture Notes in Computational Science and
Engineering. Springer, 2008.

[7] S. Börm and W. Hackbusch. London Mathematical Society Lecture Notes, chapter
Approximation of boundary element operators by adaptive H-matrices, pages 58–75.
Cambridge University Press, 2004.

[8] A. Brandt and A. A. Lubrecht. Multilevel matrix multiplication and fast solution of the
integral equations. Journal of Computational Physics, 90(2):348–370, 1990.

[9] A. Brandt and C. H. Venner. Multilevel evaluation of integral transforms with
asymptotically smooth kernels. SIAM Journal on Scientific Computing, 19(2):468–492,
1998.

[10] Steffen Bröm, Lars Grasedyck, and Wolfgang Hackbusch. Lectures on hierarchical
matrices. Technical report, Max Plank Institute for Mathematics, 2006.

[11] R. Coifman, V. Rokhlin, and S. Wandzura. The fast multipole method for the wave
equations: a pedestrian prescription. IEEE Antennas Propagation Magazine, 35(3):7–12,
1993.

[12] Gene H. Golub and Charles F. Van Loan. Matrix Computations. John Hopkins Studies
in the Mathematicas Sciences. John Hopkins University Press, 4th edition, 20013.

[13] S. A. Goreinov, E. E. Tyrtyshnikov, and N. L. Zamarashkin. A theory of pseudoskeleton
approximations. Linear Algebra Applications, 261:1–21, 1997.

[14] L. Grasedyck and W. Hackbusch. Construction and arithmetics of H-matrices. Technical
report, Max Plank Institute for Mathematics, 2004.

[15] L. Greengard and V. Rokhlin. A fast algorithm for particle simulations. Journal of
Computational Physics, 73(2):325–348, 1987.

[16] Leslie Greengard. The rapid evaluation of potential fields in particle systems. Frontiers
in Applied Mathematics, 1988.

[17] W. Hackbusch. A sparse arithmetic based on H-matrices. part i: Introduction to H-
matrices. Computing, 62(2):89–108, 1999.

[18] W. Hackbusch. A sparse arithmetic based on H-matrices. part ii: Application to multi-
dimensional problems. Computing, 64(1):21–47, 2000.

43

[19] W. Hackbusch, B. N. Khoromskij, and S. Sauter. Lectures on Applied Mathematics, chapter
On H2-matrices, pages 9–29. Springer-Verlag, 2000.

[20] W. Hackbusch and Z. P. Nowak. On the complexity of the panel method. In International
Conference on Modern Problems in Numerical Analysis, 1986.

[21] W. Hackbusch and Z. P. Nowak. On the fast matrix multiplication in the boundary element
method by panel clustering. Numerical Mathematics, 54(4):463–491, 1989.

[22] W. Hackbusch and S. Sauter. On the efficient use of the galerkin method to solve fredholm
integral equations. In Proceeding of the 1992 International Symposium on Numerical
Analysis, Part I, volume 38, pages 301–322, 1993.

[23] Frank Ihlenburg. Finite Element Analysis of Acoustic Scattering. Springer, 1998.

[24] S. Kurz, O. Rain, and S. Rjasanow. The adaptive cross approximation technique for the
3d boundary element method. IEEE Transaction on Magnetics, 38(2):421–424, 2002.

[25] J. Laviada, R. Mittra, M. R. Pino, and F. Las-Heras. On the convergence of the aca.
Microwave and Optical Letters, 51(10):2458–2459, 2009.

[26] Jean-Claude Nédélec. Acoustic and Electromagnetic Equations: Integral Representations
for Harmonic Problems. Number 144 in Applied Mathematical Sciences. Springer, 2001.

[27] N. Nishimura. Fast multipole accelerated boundary integral equation methods. Applied
Mechanical Review, 55(4):299–323, 2002.

[28] A. K. Noor and J. M. Peters. Reduced basis technique for nonlinear analysis of structures.
AIAA Jounal, 18(4):455–462, April 1980.

[29] V. Rokhlin. Rapid solution of integral equations of classical potential theory. Journal of
Computational Physics, 60(2):187–207, 1985.

[30] Stefan Sauter. Über die Verwendung des Galerkinverfahrens zur Lösung Fredholmscher
Integralgleichungen (On the use of Galerkin methods to solve Fredholm integral equations).
PhD thesis, Chistian-Albrechts-Universität, 1992.

[31] Stefan Sauter and Christoph Schwab. Boundary Element Methods. Springer Series in
Computational Mathematics. Springer, 2001.

[32] E. E. Tyrtyshnikov. Mosaic-skeleton approximations. Calcolo, 33(1-2):47–57, 1996.

[33] K. Zhao, M. N. Vouvakis, and J.-F. Lee. The adaptive cross approximation algorithm
for accelerated method of moments computation of emc problems. IEEE Transaction on
Electromagnetic Compatibility, 47:763–773, 2005.

44

	Introduction
	Computational Complexity of the Boundary Element Method: An Example
	Introduction
	Integral Representation and Integral Equation
	Variational Formulation
	Galerkin Discretization and Computational Cost

	Hierarchical Matrices, Cross-Approximation And Other Fast Methods for the BIE
	Introduction
	Low-Rank Matrices and Their Relation with the Kernel of an Integral Operator
	Matrices Arising from Degenerated Kernels
	Low-Rank Matrices and Their Representation
	Basic Operations Involving Low-Rank Matrices
	Connection with the Classical Fast Methods

	The Hierarchical Matrices Methods
	Index Sets, Clusters and Cluster Trees
	Block-Clusters
	Geometrical Admissibility of Block-Clusters
	Block-Cluster Trees and Admissible Partitions of the System Matrix
	Hierarchical Matrices

	Low-Rank Approximation of Matrices Arising in the Discretization of Integral Operators
	The Existence of Low-Rank Approximations
	The Relation Between the Kernel, the Existence of Degenerate Approximants and Its Quality
	Cross-Aproximation Methods

	Example Computations
	An Elemental Case
	Cross-Approximation for the BEM for the Electric Field Integral Equation
	BEM for the Perfect Electric Conductor
	Cross-Approximation for Separated Objects

	Historical Review
	The Acceleration of Pairwise Interactions and the Fast Multipole Method
	The Panel Clustering Method and the Development of the Hierarchical Structures
	The Hierarchical Matrix
	Cross-Approximation Methods

